首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Measurements were made of the surface tension of the aqueous solutions of p-(1,1,3,3-tetramethylbutyl) phenoxypoly(ethylene glycols) having 10 oxyethylene groups in the molecule (Triton X-100, TX100) and cetyltrimethylammonium bromide (CTAB) with Zonyl FSN-100 (FC6EO14, FC1) as well as with Zonyl FSO-100 (FC5EO10, FC2) ternary mixtures. The obtained results were compared to those provided by the Fainerman and Miller equation and to the values of the solution surface tension calculated, based on the contribution of a particular surfactant in the mixture to the reduction of water surface tension. The changes of the aqueous solution ternary surfactants mixture surface tension at the constant concentration of TX100 and CTAB mixture at which the water surface tension was reduced to 60 and 50 mN/m as a function of fluorocarbon surfactant concentration, were considered with regard to the composition of the mixed monolayer at the water-air interface. Next, this composition was applied for the calculation of the concentration of the particular surfactants in the monolayer using the Frumkin equation. On the other hand, the Gibbs surface excess concentration was determined only for the fluorocarbon surfactants. The tendency of the particular surfactants to adsorb at the water-air interface was discussed, based on the Gibbs standard free energy of adsorption which was determined using different methods. This energy was also deduced, based on the surfactant tail surface tension and tail-water interface tension.  相似文献   

3.
全氟丁基磺酸钠与辛基三乙基溴化铵的相互作用   总被引:1,自引:0,他引:1  
通过测定辛基三乙基溴化铵(C8H17N(CH2CH3)3Br,C8NE)与全氟丁基磺酸钠(C4F9SO3Na,C4F)组成的不同混合比的碳氢-碳氟正负离子表面活性剂混合体系的表面张力,得到不同摩尔比时C8NEC4F体系的临界胶束浓度(cmc)、cmc处的表面张力(γcmc)、总饱和吸附量、不同表面张力时表面吸附层的组成,利用Gibbs-Duhem方程求得cmc处的胶团组成。 采用规则溶液理论计算了胶团中分子间相互作用参数(βm),并求得cmc以上的胶团组成。 实验表明,C8NEC4F复配体系的cmc远远小于单体系的cmc,这也体现在该体系的βm负值很大,胶团内分子相互作用很强。 但是C4F与C8NE复配后γcmc较C4F单体系的变化幅度不是特别大(γcmc降低2~4 mN/m),这是由于C8NEC4F碳链的不对称性导致部分C8NE的碳链在溶液表面弯曲而覆盖了C4F端基CF3基团。 表面吸附层中氟表面活性剂相对于本体溶液是富集的,即使对于C8NE大大过量的体系,表面吸附层组成也在等摩尔附近;对于C4F过量的体系,C4F在表面吸附层中的比例比溶液中的略高。 随着表面张力的降低,表面吸附层的组成相对更偏向于氟表面活性剂。 cmc处的胶团组成随着体系中C4F含量的增大偏向于形成显著富含C4F的胶团,对于C8NE大大过量的体系,胶团组成接近等摩尔。 cmc之后的胶团组成接近等摩尔,主要归因于此时静电相互作用占主导,这和溶液配制过程中发现复配体系超过cmc一定浓度后就易生成沉淀的现象是相符的。  相似文献   

4.
十五烷基芳基磺酸钠溶液表面性质的影响因素研究   总被引:1,自引:0,他引:1  
测定了自制的四种高纯度十五烷基间二甲苯磺酸钠在纯水溶液和0.0393 mol/L异丙醇溶液中的表面性质,结果表明,随芳基向碳链中间位置的移动,临界胶束浓度cmc增大,分子极限占有面积Amin增大,标准吸附自由能 变得更负,降低表面张力的效率pc20增强,饱和吸附量Γmax降低,临界胶束浓度时的表面张力γcmc降低;且异丙醇的加入使磺酸钠溶液的临界胶束浓度显著降低。从分子结构的特点探讨了分子支化程度对表面性能的影响。  相似文献   

5.
A simplified method for predicting the dynamic surface tension of concentrated surfactant solutions is proposed. It is implemented using the framework of the Henry's Law analytical solution to the Ward and Tordai equation for diffusion-controlled adsorption, with the necessary parameters being deduced from the measured equilibrium surface tension equation and a value for the surfactant monomer diffusivity. The method is tested by calculating the dynamic surface tension relaxations of aqueous C10E6 and C10E8 solutions over concentration ranges from well below to well above their critical micelle concentrations (cmc). Results are compared with measured relaxations over 0.001-50 s, and semiquantitative agreement is found, with the best results obtained for concentrations near the cmc. The predictive method may prove useful in such applications as the screening of candidate surfactants for inks used in inkjet printing.  相似文献   

6.
We report atomic force microscopy (AFM) measurements of the forces between borosilicate glass solids in aqueous mixtures of cationic and zwitterionic surfactants. These forces are used to determine the adsorption of the surfactant as a function of the separation between the interfaces (proximal adsorption) through the application of a Maxwell relation. In the absence of cationic surfactant, the zwitterionic surfactant N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (DDAPS) undergoes little adsorption to glass at concentrations up to about 2/3 critical micelle concentration (cmc). In addition, DDAPS does not have much effect on the forces over the same concentration range. In contrast, the cationic surfactant dodecylpyridinium chloride (DPC) does adsorb to glass and does affect the force between glass surfaces at concentrations much lower than the cmc. In the presence of a small amount of DPC (0.05 mM = cmc/300), the net force between the glass surfaces is quite sensitive to the solution concentration of DDAPS. A model-independent thermodynamic argument is used to show that the surface excess of DDAPS depends on the separation between the glass interfaces when the cationic surfactant is present and that the surface excess of the cationic surfactant is more sensitive to interfacial separation in the presence of the zwitterionic surfactant. The change in adsorption of the zwitterionic surfactant is explained in terms of an intermolecular coupling between the long-range electrostatic force acting on the cationic surfactant and the short-range hydrophobic interaction between the alkyl chains on the cationic and zwitterionic surfactants. The adsorptions of cationic and zwitterionic surfactants in mixtures were measured independently and simultaneously by attenuated total internal reflection infrared spectroscopy (ATR-IR). The adsorption of the zwitterionic surfactant is enhanced by the presence of a small amount of cationic surfactant.  相似文献   

7.
We have separately determined the surface tension of pure aqueous solutions of cetyltrimethylammonium chloride and cetyltrimethylammonium bromide and their surface potentials by a Kelvin probe system. With the help of Gibbs equation, the surface excess has been determined through approximating the chemical activity of the surfactant by their dilute bulk concentration. In the following, the surface potential—surface excess isotherms were established. Those potential isotherms evidence that cetyltrimethylammonium chloride solution has a higher value compared to that of cetyltrimethylammonium bromide under equal surface excess. This phenomenon is supposed to be owed to the different distributions of chloride and bromide ions within the adsorption layer of the solutions, which can be attributed to the different properties of those two anions.  相似文献   

8.
测定了自制的9种烷基芳基磺酸盐复配体系在25℃下的临界胶束浓度cmc(1×10<'-5>moL/L)及临界胶束浓度下的表面张力γ<,cmc>(mN/m).研究了烷基芳基磺酸盐相对分子质量及其分布与表面性能的关系.平均相对分子质量432的5种分布cmc和γ<,cmc>值分别为:2.341和28.96(递增型分布);2.4...  相似文献   

9.
The interfacial and bulk properties of mixtures of the anionic surfactant (dioctyl sulphosuccinate sodium salt, AOT) with zwitterionic surfactants 3-(N,N-dimethyldodecylammonio) propane sulfonate (DPS), 3-(N,N-dimethyltetradecylammonio) propane sulfonate (TPS), 3-(N,N-dimethylhexadecylammonio) propane sulfonate (HPS) have been studied employing surface tension, fluorescence, and viscometric techniques in aqueous media at 25 °C. It is observed that these mixtures exhibit synergism and these synergistic interactions increase with the enhancement of the hydrocarbon chain of the zwitterionic surfactant. The various physicochemical properties such as critical micelle concentration (cmc), surface excess concentration (Г(max)), minimum area per molecule (A(min)), aggregation number (N(agg)), interaction parameters (β(σ), β(m)), and thermodynamic parameters such as standard Gibbs free energy of adsorption (ΔG(ads)(o)), excess free energy of micellization (ΔG(ex)), and standard Gibbs free energy of micellization (ΔG(m)(o)) have been evaluated. The negative values of ΔG(m)(o) and ΔG(ads)(o) show that the micelle formation and adsorption of surfactant at the air/solution interface is energetically favorable, while a negative value of ΔG(ex) ensures stability of the mixed micelles formed. The Regular Solution Approximation, Motomura and Rosen's approaches have been used to explain and compare the results. The packing parameter (p) ensures the formation of vesicles or bilayers for AOT+DPS/TPS mixtures, which can potentially be used as delivery agents for industrial applications.  相似文献   

10.
N-酰基-L-丝氨酸钠表面活性剂的合成和胶束化热力学性质   总被引:1,自引:0,他引:1  
梁亚琴  胡志勇  曹端林 《应用化学》2013,30(9):1042-1047
以L-丝氨酸和长链酰氯为原料,合成了3种不同碳链长度(n=8,12,14)的N-酰基-L-丝氨酸。 并以1H NMR、ESI-MS和元素分析对3种目标产物进行了表征。 采用表面张力法研究了N-酰基-L-丝氨酸钠在298、308、318和328 K时水溶液中的聚集行为,确定了临界胶束浓度(cmc)、临界胶束浓度下的最低表面张力(γcmc)、表面饱和吸附量Γmax。 由cmc和温度的关系,应用相分离模型计算了胶束化热力学参数ΔGom、ΔHom和ΔSom。 结果表明,ΔGom<0,ΔHom的绝对值比-TΔSom绝对值小的多,说明胶束化过程为熵驱动过程,随着温度的升高,胶束化过程是熵-焓补偿的过程。  相似文献   

11.
The micellization of anionic gemini surfactant, N,N'-ethylene(bis(sodium N-dodecanoyl-beta-alaninate)) (212), and its monomer, N-dodecanoyl-N-methyl alaninate (SDMA), and polyethoxylated nonionic surfactants, C(12)E(5) and C(12)E(8), has been studied tensiometrically in pure and mixed states in an aqueous solution of 0.1 M NaCl at pH 11 to determine physicochemical properties such as critical micellar concentration (cmc), surface tension at the cmc (gamma(cmc)), maximum surface excess (Gamma(max)) and minimum area per surfactant molecule at the air/water interface (A(min)). The theories of Rosen, Rubingh, Motomura, Maeda, and Nagarajan have been applied to investigate the interaction between those surfactants at the interface and in the micellar solution, the composition of the aggregates formed, the theoretical cmc in pure and mixed states, and the structural parameters as proposed by Tanford and Israelachvili. Various thermodynamic parameters (free energy of micellization and interfacial adsorption) have been calculated with the help of regular solution theory and the pseudophase model for micellization.  相似文献   

12.
The interfacial and thermodynamic properties of a non-ionic surfactant, poly[oxyethylene(10)] lauryl ether, [C12H25(OCH2CH2)10OH], in aqueous solution in the presence of amino acids have been investigated. Critical micelle concentrations (cmcs) were determined by surface tension measurements at different additive concentrations and temperatures using a du Nouy tensiometer. From the surface tension data, the surface excess concentration (F), the minimum area per molecule (Amin), and the surface pressure at the cmc(?cmc) were evaluated. Thermodynamic parameters of adsorption and micellization were evaluated and discussed. The other solution properties of this surfactant like the cloud point viscosity, and foaming have been determined in the presence of different concentrations of alanine and glycine.  相似文献   

13.
Aqueous solutions of three kinds of surface active ionic liquids composed of the 1-alkyl-3-methylimidazolium cation have been investigated by means of surface tension and electrical conductivity measurements at room temperature (298 K). The surface tension measurements provided a series of parameters, including critical micelle concentration (cmc), surface tension at the cmc (gammacmc), adsorption efficiency (pC20), and effectiveness of surface tension reduction (Picmc). In addition, with application of the Gibbs adsorption isotherm, maximum surface excess concentration (Gammamax) and minimum surface area/molecule (Amin) at the air-water interface were estimated. The effect of sodium halides, NaCl, NaBr, and NaI, on the surface activity was also investigated. It was found that both the pC20 and the Picmc were rather larger than those reported for traditional ionic surfactants and the cmc values were somewhat lower than those for typical cationic surfactants, alkyltrimethylammonium bromides, and comparable to typical anionic surfactants, sodium alkyl sulfates. These results demonstrate that the surface activity of long-chained imidazolium IL is somewhat superior to that of conventional ionic surfactants.  相似文献   

14.
From measurements of the surface tension, density, viscosity and light scattering of aqueous solutions of methanol, ethanol and propanol at 293?K, their activity in the surface monolayer, surface excess concentration, and apparent and partial molar volume were determined. The surface excess concentration of alcohols at the water?Cair interface was determined from the Gibbs equation by using both the alcohol's activity and their molar fraction in the bulk phase and recalculated by using the Guggenheim?CAdam equation. The values of the surface excess concentration determined from the Gibbs equation were also applied to determine the standard Gibbs energy of alcohol adsorption at the water?Cair interface from Langmuir??s equation and compared to those determined from that of Aronson and Rosen.  相似文献   

15.
We propose a direct method to measure the equilibrium and dynamic surface properties of surfactant solutions with very low critical micellar concentrations (CMC) using a pendant drop tensiometer. We studied solutions of the nonionic surfactant hexaethylene glycol monododecyl ether (C(12)E(6)) and of the ionic surfactant hexadecyl trimethyl ammonium bromide (CTAB) with concentrated sodium bromide (NaBr). The variation of the surface tension as a function of surface concentration is obtained easily without the need for complex models and compares well with the result obtained using the Gibbs adsorption equation. The time-dependent surface concentration of each surfactant was also measured, and the adsorption process was found to be diffusion-controlled. The diffusion coefficients of the two surfactants can be extracted from the data and were found in very good agreement with literature values, further validating the method.  相似文献   

16.
The effect of ionic strength on association between the cationic polysaccharide chitosan and the anionic surfactant sodium dodecyl sulfate, SDS, has been studied in bulk solution and at the solid/liquid interface. Bulk association was probed by turbidity, electrophoretic mobility, and surface tension measurements. The critical aggregation concentration, cac, and the saturation binding of surfactants were estimated from surface tension data. The number of associated SDS molecules per chitosan segment exceeded one at both salt concentrations. As a result, a net charge reversal of the polymer-surfactant complexes was observed, between 1.0 and 1.5 mM SDS, independent of ionic strength. Phase separation occurs in the SDS concentration region where low charge density complexes form, whereas at high surfactant concentrations (up to several multiples of cmc SDS) soluble aggregates are formed. Ellipsometry and QCM-D were employed to follow adsorption of chitosan onto low-charged silica substrates, and the interactions between SDS and preadsorbed chitosan layers. A thin (0.5 nm) and rigid chitosan layer was formed when adsorbed from a 0.1 mM NaNO3 solution, whereas thicker (2 nm) chitosan layers with higher dissipation/unit mass were formed from solutions at and above 30 mM NaNO3. The fraction of solvent in the chitosan layers was high independent of the layer thickness and rigidity and ionic strength. In 30 mM NaNO3 solution, addition of SDS induced a collapse at low concentrations, while at higher SDS concentrations the viscoelastic character of the layer was recovered. Maximum adsorbed mass (chitosan + SDS) was reached at 0.8 times the cmc of SDS, after which surfactant-induced polymer desorption occurred. In 0.1 mM NaNO3, the initial collapse was negligible and further addition of surfactant lead to the formation of a nonrigid, viscoelastic polymer layer until desorption began above a surfactant concentration of 0.4 times the cmc of SDS.  相似文献   

17.
多烷基苯磺酸钠水溶液的表面性质   总被引:8,自引:0,他引:8  
研究了多烷基苯磺酸钠的结构, 特别是侧链碳原子数的增加, 对其表面活性的影响, 并与其它烷基苯磺酸钠进行了比较. 结果表明, 随着苯环上侧链碳原子数的增加, 多烷基苯磺酸钠的临界胶束浓度(cmc)降低, 但侧链上CH2降低cmc的程度远小于主链上CH2的作用. 当侧链碳原子数增加时, 多烷基苯磺酸钠的饱和吸附量(Γmax)降低, 表现出与主链不同的变化规律. 从多烷基苯磺酸钠的结构解释了cmc和Γmax的变化规律.  相似文献   

18.
Moles of a surfactant (gamma2(1)) absorbed per unit area of the solid-liquid interface estimated analytically from the difference of the solute molality in the bulk phase before and after adsorption have been quantitatively related to the absolute compositions deltan1 and deltan2 of the solvent and solute forming the inhomogeneous surface phase in contact with the bulk phase of homogeneous composition. By use of isopiestic experiments, negative values of gamma2(1) for the adsorption of inorganic salts onto a solid-liquid interface have been calculated in the same manner. From the linear plot of gamma2(1) versus the ratio of the bulk mole fractions of the solute and solvent, values of deltan1 and deltan2 have been evaluated under a limited range of concentrations. For the adsorption of the surfactant and the inorganic salt respectively onto the fluid interface, gamma2(1) values have been evaluated from the surface tension concentration data using the Gibbs adsorption equation. Gamma2(1) based on the arbitrary placement of the Gibbs dividing plane near the fluid interface is quantitatively related to the composition of the inhomogeneous surface phase. Also, the Gibbs equation for multicomponent solutions has been appropriately expressed in terms of a suitably derived coefficient m. Integrating the Gibbs adsorption equation for a multicomponent system, the standard free energy change, deltaG degrees, per unit of surface area as a result of the maximum adsorption gamma2(m) of the surfactant at fluid interfaces due to the change of the activity alpha2 of the surfactant in the bulk from zero to unity have been calculated. A similar procedure has been followed for the calculation of deltaG degrees for the surfactant adsorption at solid-liquid interfaces using thermodynamically derived equations. deltaG degrees values for surfactant adsorption for all such systems are found to be negative. General expressions of deltaG degrees for negative adsorption of the salt on fluid and solid-liquid interfaces respectively have also been derived on thermodynamic grounds. deltaG degrees for all such systems are positive due to the excess spontaneous hydration of the interfacial phase in the presence of inorganic salt. Negative and positive values of deltaG degree for excess surfactant and salt adsorption respectively have been discussed in light of a generalized scale of free energy of adsorption.  相似文献   

19.
Advancing contact-angle (theta) measurements were carried out with aqueous solutions of propanol and four series of aqueous solutions of dodecyl sulfate (SDDS) and propanol mixtures at constant dodecyl sulfate concentrations equal to 1 x 10(-5), 6 x 10(-4), 1 x 10(-3), and 1 x 10(-2)M, respectively. The obtained results indicate that in the range of propanol concentrations studied there were considerable contact-angle changes, with exception of the solution series at a constant concentration value of SDDS higher than its critical micelle concentration. From the results of contact-angle measurements and application of the Gibbs and Young equations the ratio of the excess concentration of surfactant and propanol at the solid-aqueous solution interface to the excess of their concentration at the aqueous solution-air interface was calculated. From the calculations it appears that there is a straight linear dependence between the adhesion tension and surface tension of aqueous solutions of SDDS and propanol mixtures, and the slope of the line is equal to -1, which suggests that the surface excess of the SDDS and propanol mixture at the polytetrafluoroethylene-solution interface is the same as the at the solution-air interface. The extrapolation of the straight line to the point corresponding to the surface tension of the aqueous solution, which completely spreads over the polytetrafluoroethylene surface, gives a critical surface tension of wetting equal to 23.7 mN/m. On the basis of the critical surface tension and the Young and modified Szyszkowski equations it was found that in a polytetrafluoroethylene-aqueous solution of the SDDS and propanol mixture, the interface tension can be predicted by the modified Szyszkowski equation.  相似文献   

20.
朱瑶  王薇 《化学学报》1988,46(5):413-418
研究了全氟辛酸钠与溴化十四烷基三甲铵混合水溶液的表面活性. 测定了不同比例混合物水溶液的表面张力-浓度曲线, 得出临界胶团浓度(cmc)及监 界胶团浓度时的溶液表面张力(γcmc)值. 应用Gibbs吸附公式及吸附层中两表面活性剂分子相互作用参数法求出表面总吸附量、吸附层组成及两表面活性剂分别吸附量等. 指示此吸附层具有多分子层性质. 这可能是碳氢、碳氟正负离子混合体系的特点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号