首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipase‐catalyzed ring‐opening bulk polymerizations of 3(S)‐sec‐butylmorpholine‐2,5‐dione (BMD) were investigated. Selected commercial lipases were screened as catalysts for BMD polymerization at 110°C. Polymerizations catalyzed with 10 wt.‐% of lipase PPL and PC result in BMD conversions of about 70% and in molecular weights of the products ranging from 5 500 to 10 700. Lipases MJ, CR and ES showed lower catalytic activities for the polymerization of BMD. Poly(3‐sec‐butylmorpholine‐2,5‐dione) has a carboxylic acid group at one end and a hydroxy group at the other end. During the polymerization racemization of the isoleucine residue takes place. Lipase PPL was selected for a more detailed study. The apparent rate of polymerization increases with increasing PPL concentration when the polymerization temperature is 110°C. When the PPL concentration is 5 and 10 wt.‐% with respect to the monomer, a conversion of about 70% is reached after 5 d and 3 d, respectively, while for a PPL concentration of 1 wt.‐% the conversion is less than 7% even after 6  d. High concentrations of PPL (10 wt.‐%) result in high Mn values (< 4  d). The highest molecular weight poly(BMD), Mn = 19 900, resulted from a polymerization conducted at 120°C with 5 wt.‐% PPL for 6 d. The general trend observed by varying the polymerization temperature is as follows: (i) monomer conversion and Mn increase with increasing reaction temperature from 110 to 125°C, (ii) monomer conversion and Mn decrease with an increase in reaction temperature from 125 to 130°C. Water content was found to be an important factor that controls both the conversion and the molecular weight. With increasing water content, enhanced polymerization rates are achieved while the molecular weight of poly(BMD) decreases.  相似文献   

2.
《化学:亚洲杂志》2017,12(23):2996-2999
Open‐circuit photovoltage (Voc ) is among the critical parameters for achieving an efficient light‐to‐charge conversion in existing solar photovoltaic devices. Natural photosynthesis exploits light‐harvesting chlorophyll (Chl) protein complexes to transfer sunlight energy efficiently. We describe the exploitation of photosynthetic fucoxanthin‐chlorophyll protein (FCP) complexes for realizing photoelectrochemical cells with a high Voc . An antenna‐dependent photocurrent response and a Voc up to 0.72 V are observed and demonstrated in the bio‐photovoltaic devices fabricated with photosynthetic FCP complexes and TiO2 nanostructures. Such high Voc is determined by fucoxanthin in FCP complexes, and is rarely found in photoelectrochemical cells with other natural light‐harvesting antenna. We think that the FCP‐based bio‐photovoltaic conversion will provide an opportunity to fabricate environmental benign photoelectrochemical cells with high Voc , and also help improve the understanding of the essential physics behind the light‐to‐charge conversion in photosynthetic complexes.  相似文献   

3.
n‐Butyl acrylate (BA), 2‐ethylhexyl acrylate (EHA), and methyl methacrylate (MMA) are commonly used monomers in pressure‐sensitive adhesive formulations. The bulk free‐radical copolymerizations of BA/EHA, MMA/EHA, and BA/MMA are studied at 60 °C to demonstrate the use of copolymer reactivity ratios for the prediction of BA/MMA/EHA terpolymer composition. The reactivity ratios for BA/EHA and MMA/EHA copolymer systems are determined using low conversion experiments; BA/MMA reactivity ratios are already known from the literature. The reactivity ratio estimates for the BA/EHA system are r BA = 0.994 and r EHA = 1.621 and the estimates for MMA/EHA are r MMA = 1.496 and r EHA = 0.315. High conversion experiments are conducted to validate the reactivity ratios. The copolymer reactivity ratios are shown to predict terpolymer composition of high conversion BA/MMA/EHA experiments.  相似文献   

4.
The curing process of hexamethylene diisocyanate‐based polyurethane has been monitored by applying FTIR and DSC methods. A general relationship between glass‐transition temperature (Tg) and conversion of curing process has been obtained. This suggests that the reaction path and the relative reaction rates are independent of the curing temperature. The reaction kinetics of the system is analyzed using the Tg data converted to the conversion of the curing process. A set of experimental data and one theoretical model of Tg versus chemical conversion are presented to prove the assumption where a direct one‐to‐one relationship between the Tg (as measured) and the chemical conversion is obtained. Apparent activation energies (Ea) obtained by applying three different methods suggest good agreement. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2213–2220, 2000  相似文献   

5.
Air stable and easily accessible, 1‐(α‐aminobenzyl)‐2‐naphthols are used as efficient phosphine‐free ligands in palladium‐catalyzed Suzuki reaction for a variety of substrates under conventional heating as well as ultrasonic conditions. Multi‐brominated aromatic substrates were successfully converted to corresponding arylated moieties with good conversion and selectivity. A novel one‐pot two‐step cascade reaction strategy involving Wittig and Suzuki reactions is developed for efficient synthesis of 4‐styryl biphenyls (C6‐C2‐C6‐C6 unit). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Suitably substituted enantioenriched 4‐aryl‐1,4‐dihydro‐pyridines prepared by an organocatalytic enantioselective Michael addition were oxidized with MnO2 into axially chiral 4‐arylpyridines with central‐to‐axial chirality conversion. Moderate to complete percentages (cp) were observed, and a model for the conversion of chirality is discussed.  相似文献   

7.
Chain‐end free volume theory is extended for studying the glass‐transition temperature (Tg) as a function of conversion in hyperbranched polymers. Tg is found to have a non‐linear inverse relationship to the molecular weight for polymers obtained by self‐condensing vinyl polymerization (SCVP). During the monomer conversion process, Tg decreases with the increase in molecular weight (P) in the low conversion range, then levels off in the high conversion range.  相似文献   

8.
Iron nickel cobalt selenides are synthesized through a one‐step hydrothermal method. Quaternary Fe0.37Ni0.17Co0.36Se demonstrates multifunctionality and shows high electrocatalytic activity for quasi‐solid‐state dye‐sensitized solar cells with a power conversion efficiency of 8.42 %, the hydrogen evolution reaction, the oxygen evolution reaction, and water splitting. The electric power output from tandem quasi‐solid‐state dye‐sensitized solar cells under one‐sun illumination is sufficient to split water and exhibits a solar‐to‐hydrogen conversion efficiency of 5.58 % with Fe0.37Ni0.17Co0.36Se as the electrocatalyst in this integrated system. Owing to a remarkable synergistic effect, quaternary Fe0.37Ni0.17Co0.36Se is proven to be superior to ternary nickel cobalt selenide in terms of conductivity, electrocatalytic activity, and photovoltaic performance.  相似文献   

9.
In this work the reactivity of 1‐metalla‐2,5‐diaza‐cyclopenta‐2,4‐dienes of group 4 metallocenes, especially of the pyridyl‐substituted examples, towards small molecules is investigated. The addition of H2, CO2, Ph?C≡N, 2‐py?C≡N, 1,3‐dicyanobenzene or 2,6‐dicyanopyridine results in exchange reactions, which are accompanied by the elimination of a nitrile. For CO2, a coordination to the five‐membered cycle occurs in case of Cp*2Zr(N=C(2‐py)?C(2‐py)=N). A 1,4‐diaza‐buta‐1,3‐diene complex is formed by H‐transfer in the conversion of the analogous titanocene compound with CH3?C≡N, PhCH2?C≡N or acetone. For CH3?C≡N a coupling product of three acetonitrile molecules is established additionally. In order to split off the metallocene from the coupled nitriles, we examined reactions with HCl, PhPCl2, PhPSCl2 and SOCl2. In the last case, the respective thiadiazole oxides and the metallocene dichlorides were obtained. A subsequent reaction produced thiadiazoles.  相似文献   

10.
For Li‐Se batteries, ether‐ and carbonate‐based electrolytes are commonly used. However, because of the “shuttle effect” of the highly dissoluble long‐chain lithium polyselenides (LPSes, Li2Sen, 4≤n≤8) in the ether electrolytes and the sluggish one‐step solid‐solid conversion between Se and Li2Se in the carbonate electrolytes, a large amount of porous carbon (>40 wt % in the electrode) is always needed for the Se cathodes, which seriously counteracts the advantage of Se electrodes in terms of volumetric capacity. Herein an acetonitrile‐based electrolyte is introduced for the Li‐Se system, and a two‐plateau conversion mechanism is proposed. This new Li‐Se chemistry not only avoids the shuttle effect but also facilitates the conversion between Se and Li2Se, enabling an efficient Se cathode with high Se utilization (97 %) and enhanced Coulombic efficiency. Moreover, with such a designed electrolyte, a highly compact Se electrode (2.35 gSe cm?3) with a record‐breaking Se content (80 wt %) and high Se loading (8 mg cm?2) is demonstrated to have a superhigh volumetric energy density of up to 2502 Wh L?1, surpassing that of LiCoO2.  相似文献   

11.
A series of organic dyes were prepared that displayed remarkable solar‐to‐energy conversion efficiencies in dye‐sensitized solar cells (DSSCs). These dyes are composed of a 4‐tert‐butylphenylamine donor group (D), a cyanoacrylic‐acid acceptor group (A), and a phenylene‐thiophene‐phenylene (PSP) spacer group, forming a D‐π‐A system. A dye containing a bulky tert‐butylphenylene‐substituted carbazole (CB) donor group showed the highest performance, with an overall conversion efficiency of 6.70 %. The performance of the device was correlated to the structural features of the donor groups; that is, the presence of a tert‐butyl group can not only enhance the electron‐donating ability of the donor, but can also suppress intermolecular aggregation. A typical device made with the CB‐PSP dye afforded a maximum photon‐to‐current conversion efficiency (IPCE) of 80 % in the region 400–480 nm, a short‐circuit photocurrent density Jsc=14.63 mA cm?2, an open‐circuit photovoltage Voc=0.685 V, and a fill factor FF=0.67. When chenodeoxycholic acid (CDCA) was used as a co‐absorbent, the open‐circuit voltage of CB‐PSP was elevated significantly, yet the overall performance decreased by 16–18 %. This result indicated that the presence of 4‐tert‐butylphenyl substituents can effectively inhibit self‐aggregation, even without CDCA.  相似文献   

12.
Nitrophenols are among the widely used industrial chemicals worldwide; however, their hazardous effects on environment are a major concern nowadays. Therefore, the conversion of environmentally detrimental p‐nitrophenol (PNP) to industrially valuable p‐aminophenol (PAP), a prototype reaction, is an important organic transformation reaction. However, the traditional conversion of PNP to PAP is an expensive and environmentally unfriendly process. Here, we report a honeycomb‐like porous network with zeolite‐like channels formed by the self‐organization of copper, 1,10‐phenanthroline, 4,4′‐bipyridine, and water. This porous network effectively catalyzed the transformation of hazardous PNP to pharmaceutically valued PAP. In the presence of complex, PNP to PAP conversion occurred in a few minutes, which is otherwise a very sluggish process. To assess the kinetics, the catalytic conversion of PNP to PAP was studied at five different temperatures. The linearity of lnCt/Co versus temperature plot indicated pseudo‐first‐order kinetics. The copper complex with zeolite like channels may find applications as a reduction catalyst both on laboratory and industrial scales and in green chemistry for the remediation of pollutants.  相似文献   

13.
The absorption of light by molecules can induce ultrafast dynamics and coupling of electronic and nuclear vibrational motion. The ultrafast nature in many cases rests on the importance of several potential energy surfaces in guiding the nuclear motion—a concept of central importance in many aspects of chemical reaction dynamics. This Minireview focuses on the non‐ergodic nature of internal conversion, that is, on the concept that the nuclear dynamics only sample a reduced phase space, potentially resulting in localization of the dynamics in real space. A series of results that highlight the nonstatistical nature of the excited‐state deactivation process is presented. The examples are categorized into four groups. 1) Localization of the energy in one degree of freedom in S2→S1 transitions, in which the transition is either determined by the time spent in the S2→S1 coupling region or by the time it takes to reach it. 2) Localization of energy into a single reactive mode, which is dictated by the internal conversion process. 3) Initiation of the internal conversion by activation of a single complex motion, which then specifically couples to a reactive mode. 4) Nonstatistical internal conversion as a tool to accomplish biomolecular stability. Herein, the discussion on nonstatistical internal conversion in DNA as a mechanism to eliminate electronic excitation energy is extended to include molecules with an S?S bond as a model of the disulfide bridge in peptides. All of these examples are summed up in Kasha’s rule. For systems with multiple degrees of freedom it will be possible to locate an appropriate motion somewhere in phase space that will take the wavepacket to the coupling region and facilitate an ultrafast transition to S1. Once at S1, the momentum of the wavepacket is lost and the only options left are the statistical processes of reaction or light emission.  相似文献   

14.
An efficient and practical protocol for the enantioselective cobalt‐catalyzed hydrovinylation of vinylarenes with ethylene at low (1.2 bar) pressure has been developed. As precatalysts, stable [L2CoCl2] complexes are employed that are activated in situ with Et2AlCl. A modular chiral TADDOL‐derived phosphine–phosphite ligand was identified that allows the conversion of a broad spectrum of substrates, including heterocyclic vinylarenes and vinylferrocene, to smoothly afford the branched products with up to 99 % ee and virtually complete regioselectivity. Even polar functional groups, such as OH, NH2, CN, and CO2R, are tolerated.  相似文献   

15.
The electrochemical CO2 reduction (ECDRR), as a key reaction in artificial photosynthesis to implement renewable energy conversion/storage, has been inhibited by the low efficiency and high costs of the electrocatalysts. Herein, we synthesize a fluorine‐doped carbon (FC) catalyst by pyrolyzing commercial BP 2000 with a fluorine source, enabling a highly selective CO2‐to‐CO conversion with a maximum Faradaic efficiency of 90 % at a low overpotential of 510 mV and a small Tafel slope of 81 mV dec?1, outcompeting current metal‐free catalysts. Moreover, the higher partial current density of CO and lower partial current density of H2 on FC relative to pristine carbon suggest an enhanced inherent activity towards ECDRR as well as a suppressed hydrogen evolution by fluorine doping. Fluorine doping activates the neighbor carbon atoms and facilitates the stabilization of the key intermediate COOH* on the fluorine‐doped carbon material, which are also blocked for competing hydrogen evolution, resulting in superior CO2‐to‐CO conversion.  相似文献   

16.
Methanol synthesis by CO2 hydrogenation is a key process in a methanol‐based economy. This reaction is catalyzed by supported copper nanoparticles and displays strong support or promoter effects. Zirconia is known to enhance both the methanol production rate and the selectivity. Nevertheless, the origin of this observation and the reaction mechanisms associated with the conversion of CO2 to methanol still remain unknown. A mechanistic study of the hydrogenation of CO2 on Cu/ZrO2 is presented. Using kinetics, in situ IR and NMR spectroscopies, and isotopic labeling strategies, surface intermediates evolved during CO2 hydrogenation were observed at different pressures. Combined with DFT calculations, it is shown that a formate species is the reaction intermediate and that the zirconia/copper interface is crucial for the conversion of this intermediate to methanol.  相似文献   

17.
B12‐antimetabolites are compounds that counteract the physiological effects of vitamin B12 and related natural cobalamins. Presented here is a structure‐ and reactivity‐based concept of the specific ′antivitamins B12′: it refers to analogues of vitamin B12 that display high structural similarity to the vitamin and are ′locked chemically′ to prevent their metabolic conversion into the crucial organometallic B12‐cofactors. Application of antivitamins B12 to healthy laboratory animals is, thus, expected to induce symptoms of B12‐deficiency. Antivitamins B12 may, hence, be helpful in elucidating still largely puzzling pathophysiological phenomena associated with B12‐deficiency, and also in recognizing physiological roles of B12 that probably still remain to be discovered.  相似文献   

18.
The conversion of aldehydes into carboxylic acids using oxidizing agents is a common protocol in transformation chemistry. An efficient oxidation strategy of transformation of pyrazole‐4‐aldehydes to the corresponding acids using vanadium catalysts in the presence of 30% H2O2 as an oxidant is described. The catalytic technology was successfully applied to a range of various 4‐formylpyrazoles, and plausible mechanism is also discussed.  相似文献   

19.
SF6 was applied as pentafluorosulfanylation reagent to prepare ethers with a vicinal SF5 substituent through a one‐step method involving photoredox catalysis. This method shows a broad substrate scope with respect to applicable alcohols for the conversion of α‐methyl and α‐phenyl styrenes. The products bear a new structural motif with two functional groups installed in one step. The alkoxy group allows elimination and azidation as further transformations into valuable pentafluorosulfanylated compounds. These results confirm that non‐toxic SF6 is a useful SF5 transfer reagent if properly activated by photoredox catalysis, and toxic reagents are completely avoided. In combination with light as an energy source, a high level of sustainability is achieved. Through this method, the proposed potential of the SF5 substituent in medicinal chemistry, agrochemistry, and materials chemistry may be exploited in the future.  相似文献   

20.
Shape‐ and functionality‐controlled organization of porphyrin derivatives–C60 supramolecular assemblies using TiO2 nanotubes and nanoparticles has been achieved for the development of photochemical solar cells. The differences in the efficiency of light‐energy conversion of these solar cells are explained on the basis of the geometrical orientation of the porphyrins with respect to the TiO2 surface and the supramolecular complex formed with C60. The maximum photon‐conversion efficiency (IPCE) of 60 % obtained with TiO2 nanotube architecture is higher than the value obtained with nanoparticle architecture. The results presented in this study show the importance of substrate morphology in promoting electron transport within the mesoscopic semiconductor film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号