首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Propericiazine (PCZ) is an antipsychotic agent used for the treatment and the prevention of relapse of schizophrenia. We found that when an oral solution containing PCZ was mixed with a green tea drink, the residual content of PCZ was reduced by forming an insoluble complex between PCZ and tea polyphenol. In this study, the mechanism underlying the incompatibility of PCZ with green tea polyphenol (GTP) in the solution was clarified by isothermal titration microcalorimetry (ITC). Both solutions of 27.4 mM PCZ and 2.2 mM (?)-epigallocatechin gallate (EGCg), which is a main ingredient of GTP, were mixed and then PCZ in the filtrate was reduced to approximately 60 %. According to measurement at 298 K by ITC, PCZ formed an insoluble complex with EGCg at an associate constant (K) of 4.75 × 10M?1 exothermically, ΔH = ?40.0 kJ mol?1. When (?)-epicatechin gallate (ECg) was used as the GTP, PCZ interacted with ECg with K and ΔH values of 3.74 × 10M?1 and ?22.1 kJ mol?1, respectively. On the other hand, little heat of the reaction between PCZ and (?)-epigallocatechin or (?)-epicatechin was observed. The results indicated that the main reason for this incompatibility was the formation of an insoluble complex by PCZ and a gallate-type GTP such as EGCg and ECg in the aqueous solution.  相似文献   

2.
The matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF) and micellar electrokinetic chromatography (MEKC) methods were used to identify and quantify five tannins, (+)-catechin, (?)-epigallocatechin, (?)-epigallocatechin gallate, (?)-epicatechin gallate and (?)-epicatechin, from aqueous, ethanolic and acetonic extracts of Calendula officinalis, Hy-pericum, perforatum, Galium verum and Origanum vulgare. The MALDI-TOF technique was used for screening tannins monomers and oligomers in plant extracts. The sandwich method and matrix 2,5-dihydroxybenzoic acid with a concentration of 10 mg mL?1 in acetonitrile/ultrapure water/trifluoroacetic acid (20: 80: 0.1, vol.) were used. The electrophoretic method developed for the separation and quantification of 5 catechins in 15 min exhibited good efficiency and precision, low limits of detection (0.0032–0.0153 μ.g mL-1) and quantification (0.0096–0.0466 μ.g mL?1). The correlation coefficients (R2) exceeded 0.9986 and the recovery values ranged between 94.25 % and 102.50 %. The present work provides new information on some of the less studied compounds present in plants frequently used in traditional medicine.  相似文献   

3.
Lei Feng  Fengsheng Zhao 《Chromatographia》2009,69(11-12):1325-1332
A novel low-pressure preparative electrochromatography apparatus was set up to implement the separation of small polar compounds. In this apparatus, a distinguished bottom “T”-shape electrode chamber was designed to remove electrolysis gas and meanwhile enable the apparatus to separate small-molecule solutes. Partial separation of the model sample, crude tea extract (mainly containing (?)-epigallocatechin gallate, (?)-epicatechin gallate and caffeine) by hydrophobic macroporous adsorption column (maximum 40 cm × 20 mm ID) with electric field (maximum 111.0 V cm?1) proved the effectiveness of the electrochromatography apparatus. The fact that the total solute recoveries were over 90% showed the qualification of the apparatus for preparative purpose. The stronger the electric field, the more obvious the electrically induced effects. An alternative in-liquid load manner (loading sample in liquid after the electric field was applied) was proposed, which could further enhance the electrically induced effects than in-column load manner (loading sample on resin bed before applying electric field). Scale-up on electrochromatography by column diameter from 6 to 20 mm resulted in similar electrically induced effects on peak resolutions. All of these investigations revealed that the new technology was feasible and promising on separating small polar compounds, for it inherits the advantages of both liquid chromatography and electrophoresis.  相似文献   

4.
Epigallocatechin gallate (EGCG) is the main component of green tea extracts that inhibits the growth of Mycobacterial smegmatis mc2155, and the mechanism is not clear. This study showed the effects of EGCG on the growth of mc2155. The content and the structure of EGCG in LB medium with mc2155 were identified by HPLC and LC/MS. Transmission electron microscopy was utilised to identify the cell envelope structure. As a result, the optional inhibition concentration was determined to be 20 μg mL? 1. Most of EGCG was transferred into its isomeride in LB medium, but the inhibition effects against mc2155 had yet been maintained. The changes of cell envelope structure were showed after EGCG treatment for 18 h. The cell wall appeared to have a less electron-translucent zone, turn rougher and thicker. The results show that EGCG impacts the integrity of mycobacterial cell wall and is likely be a better prophylactic agent against tuberculosis.  相似文献   

5.
Electrochemical oxidation of (?)‐epigallocatechin gallate (EGCG), the main monomer flavanol found in green tea, has been investigated over a wide pH range at a glassy‐carbon electrode using square‐wave voltammetry (SWV). Square‐wave voltammograms of (?)‐epigallocatechin (EGC) and gallic acid have been studied as well. The I–E profile of EGCG, i.e. the oxidation potentials and the current responses of the first and the second peak, is pH dependent. The oxidation of EGCG is a quasireversible process over the studied pH range, which was also confirmed by the non‐linear relationship between the peak currents and squre root of frequency. The best SWV responses for EGCG were obtained at pH 2.0, frequency of 100 Hz, step of 2 mV and amplitude of 50 mV. Under these conditions, linear responses for EGCG were obtained for concentrations from 1×10?7 M to 1×10?6 M, and calculated LOD and LOQ for the first oxidation peak were 6.59×10?8 M and 2.19×10?7 M, respectively. The proposed electroanalytical procedure was applied for the determination of EGCG content in green tea. Developed SWV methodology represents a potential analytical tool in determination of catechins in tea samples.  相似文献   

6.
A rapid, selective and convenient liquid chromatography–mass spectrometric method for the simultaneous determination of paracetamol and caffeine in human plasma was developed and validated. Analytes and theophylline [internal standard (I.S.)] were extracted from plasma samples with diethyl ether-dichloromethane (3:2, v/v) and separated on a C18 column (150 × 4.6 mm ID, 5 μm particle size, 100 Å pore size). The mobile phase consisted of 0.2% formic acid–methanol (60:40, v/v). The assay was linear in the concentration range between 0.05 and 25 μg mL?1 for paracetamol and 10–5,000 ng mL?1 for caffeine, with the lower limit of quantification of 0.05 μg mL?1 and 10 ng mL?1, respectively. The intra- and inter-day precision for both drugs was less than 8.1%, and the accuracy was within ±6.5%. The single chromatographic analysis of plasma samples was achieved within 4.5 min. This validated method was successfully applied to study the pharmacokinetics of paracetamol and caffeine in human plasma.  相似文献   

7.
Pomponio R  Gotti R  Luppi B  Cavrini V 《Electrophoresis》2003,24(10):1658-1667
Microemulsion electrokinetic chromatography (MEEKC) was applied to the separation of six catechins and caffeine, the major constituents of the green tea. The developed methods involved the use of sodium dodecyl sulfate (SDS) as surfactant, n-heptane as organic solvent and an alcohol as cosurfactant. The separations were performed under acidic conditions (pH 2.5 phosphate buffer, 50 mM) to ensure good stability of the catechins, with reversed polarity (anodic outlet). The effect of the alcohol nature on the MEEKC selectivity was evaluated; nine alcohols were used as cosurfactant: 1-butanol, tert-butanol, 1-pentanol, 2-pentanol, 3-pentanol, cyclopentanol, 1-hexanol, 2-hexanol, and cyclohexanol. The migration order of (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-gallocatechin (GC), (-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG), caffeine and theophylline was significantly affected by the alcohol used as cosurfactant. Using nine microemulsions, four different selectivities were achieved: A (cyclohexanol); B (2-pentanol, 3-pentanol, 1-hexanol, 2-hexanol); C (1-butanol, 1-pentanol, cyclopentanol); D (tert-butanol). MEEKC methods, based on 2-hexanol and cyclohexanol as cosurfactant were validated and successfully applied to the analysis of catechins and caffeine in commercial green tea products.  相似文献   

8.
Inhibiting effect of four tea catechins, (−)-epicatechin (EC), (−)-epicatechin gallate (ECG), (−)-epigallocatechin (EGC), (−)-epigallocatechin gallate (EGCG), on the lipid peroxidation induced by β-ray in tritiated water was examined using a spin probe method. 16-Doxylstearic acid (16NS) was incorporated into the liposome prepared from egg yolk phosphatidylcholine and the rate of the decrease of ESR intensity of 16NS was used as a measure of the inhibiting effect. In the low concentration region below 10−5M, catechins showed their inhibitions on the lipid peroxidation according to the order of ECG>EGCG>EC>EGC. This result was explained by a model that the initiator of the peroxidation is the hydroxyl radical (·OH) and the catechins adsorbed on the lipid membrane surface acting as scavengers of ·OH. In the high concentration range, however, the effect was diverse and it decreased with the increase of it in the case of EGCG. EGCG in this range was considered to enter into the interior of the membrane and break the structure, which causes the decrease of 16NS. Observation with transmission electron microscope (TEM) revealed that the size of the liposome became larger with the increasing concentration of EGCG and finally it was broken into fragments, showing that EGCG broadened the area of the liposome as expected from the result of ESR.  相似文献   

9.
A simple and rapid HPLC method using phenacetin (PHN) as internal standard has been developed for simultaneous determination of acetaminophen, caffeine, and chlorphenamine maleate in the product compound paracetamol and chlorphenamine maleate granules. Separation and quantitation were achieved on a 250 mm × 4.6 mm, 5 μm particle, C18 column. The mobile phase was methanol 0.05 mol L?1 aqueous KH2PO4 solution, 45:55 (v/v), containing 0.1% triethylamine and adjusted to pH 3.6 by addition of phosphoric acid; the flow rate was 1.0 mL min?1. Detection of all compounds was by UV absorbance at 260 nm and elution of the analytes was achieved in less than 12 min. The linearity, accuracy, and precision of the method were acceptable to good over the concentration ranges 6.4–153.6 μg mL?1 for acetaminophen, 5.0–120.0 μg mL?1 for caffeine, and 9.6–230.4 μg mL?1 for chlorphenamine maleate.  相似文献   

10.
This article describes the development and validation of a selective high-performance liquid chromatography method that allows, after liquid–liquid extraction and pre-column derivatization reaction with quercetin, the quantification of aluminium chlorohydrate in antiperspirant creams. Chromatographic separation was achieved on an XTerra MS C18 analytical column (150 × 3.0 mm i.d., particle size 5 μm) using a mobile phase of acetonitrile:water (15:85, v/v) containing 0.08 % trifluoroacetic acid at a flow rate of 0.30 mL min?1. Ultraviolet spectrophotometric detection at 415 nm was used. The assay was linear over a concentration range of 3.7–30.6 μg mL?1 for aluminium with a limit of quantitation of 3.74 μg mL?1. Quality control samples (4.4, 17.1 and 30.6 μg mL?1) in five replicates from five different runs of analysis demonstrated intra-assay precision (% coefficient of variation <3.8 %), inter-assay precision (% coefficient of variation <5.4 %) and an overall accuracy (% recovery) between 96 and 101 %. The method was used to quantify aluminium in antiperspirant creams containing 11.0, 13.0 and 16.0 % (w/w) aluminium chlorohydrate, respectively.  相似文献   

11.
《Analytical letters》2012,45(16):2518-2524
A reversed-phase high performance liquid chromatographic method was improved for the simultaneous determination of theobromine, paraxanthine, theophylline, and caffeine in urine. The method includes a liquid-liquid extraction at alkaline pH with ethylacetate. The 7-(2,3-dihidroxypropyl) theophylline was used as an internal standard (ISTD). The separation was achieved on a C18 column using 14:86 methanol:buffer (25 mM KH2PO4 adjusted to pH 4 with ortho-phosphoric acid) solution as mobile phase under isocratic conditions at a flow rate 1 mL min?1. An ultraviolet absorption at 274 nm was monitored. In these conditions, the LOD was 0.03 μg mL?1 for theobromine, 0.02 μg mL?1 for paraxanthine, 0.04 μg mL?1 for theophylline, and 0.08 μg mL?1 for caffeine. The method has been applied to urine samples.  相似文献   

12.
ABSTRACT

The main objective of the cleaning validation procedure is to verify the effectiveness of the cleaning procedure for removal and minimising the risk of cross-contamination, a topic that has become more important regarding the development of the medicines. Furthermore, if a product is found to be the worst among many of the products, one cleaning validation procedure of the worst-case product can cover the validation of the remaining ones, thus saving time and money. A novel, reproducible and efficient high-performance liquid chromatography (HPLC) method was optimised and validated for the detection of the following cephalosporin residues: cephalexin (CPH), cefaclor (CFC), cefixime (CFX), cefdinir (CFR) and ceftazidime (CFZ) in human spiked plasma and in production machines using rinse and swab sampling collected from surfaces and application to Cosa®CIP Detergent. Isocratic chromatographic system was performed at ambient temperature using mobile phase consisting of acetonitrile: 40% tetrabutylammonium hydroxide adjusted to pH 7.0 ± 0.1 with 10% phosphoric acid (72.5:27.5, v/v) on Ultrasphere ion pair column (250 mm × 4.6 mm, 5.0 μm particle size) at a flow rate 1.0 mL/min, injection volume 10 μL and UV detection at 265 nm. The chromatographic run time was less than 20 min for the mixture. Linear relationships were obtained over the concentration ranges 0.5–25 ng mL?1 for CPH, 1.5–30 ng mL?1 for CFC, 2–33 ng mL?1 for CFX, 3–35 ng mL?1 for CFR and 4–40 ng mL?1 for CFZ with correlation coefficients >0.998. Analytical and bioanalytical validation methods were carried out following terms of linearity, specificity, LOQ, LOD, accuracy and precision for determination of cephalosporin residues in production machines and in human spiked plasma according to FDA guidelines.  相似文献   

13.
A micellar electrokinetic capillary chromatography (MEKC) method for the simultaneous analysis of five tea catechins, theanine, caffeine, gallic acid and ascorbic acid has been developed. The catechins are (-)-epicatechin, (+)-catechin, (-)-epigallocatechin, (-)-epicatechin gallate and (-)-epigallocatechin gallate. p-Nitrophenol serves as both reference and internal standard. All the components are separated within 13 min with a 57 cm uncoated fused-silica column. On-column detection was carried out at 200 nm. This method has been used to measure these compounds in fresh tea leaves and tea liquor. The limit of detection for all analytes ranged from 1 to 20 microg/ml.  相似文献   

14.
《Analytical letters》2012,45(16):2300-2309
A molecularly imprinted polymer (MIP), which was suitable for recognizing epigallocatechin gallate (EGCG), was prepared by using EGCG as template molecule and biocompatible chitosan as a functional matrix in aqueous medium. Molecular recognition ability of the EGCG-imprinted polymer (EIP) was evaluated by high performance liquid chromatography (HPLC). The results show that the EIP has a high imprinting factor (1.32) for EGCG and was used to purify EGCG from crude tea polyphenol efficiently. The percentage of EGCG can be improved from 78.6% in crude tea polyphenol (TP) to 90.1% in product and the adsorption quantity per unit can reach 4.02 mg · g?1. EIP shows potential excellent prospect in the application of separating and purifying EGCG from TP.  相似文献   

15.
Monomers of (−)-epigallocatechin (EGC), (−)-epigallocatechin gallate (EGCG), (−)-epicatechin (EC), (−)-epicatechin gallate (ECG), (−)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) and (−)-3-O-methyl epicatechin gallate (ECG3′Me) (purity, >97%) were successfully prepared from extract of green tea by two-time separation with Toyopearl HW-40S column chromatography eluted by 80% ethanol. In addition, monomers of (−)-catechin (C), (−)-gallocatechin (GC), (−)-gallocatechin gallate (GCG), and (−)-catechin gallate (CG) (purity, >98%) were prepared from EC, EGC, EGCG, and ECG by heat-epimerization and semi-preparative HPLC chromatography. With the prepared catechin standards, an effective and simultaneous HPLC method for the analysis of gallic acid, tea catechins, and purine alkaloids in tea was developed in the present study. Using an ODS-100Z C18 reversed-phase column, fourteen compounds were rapidly separated within 15 min by a linear gradient elution of formic acid solution (pH 2.5) and methanol. A 2.5–7-fold reduction in HPLC analysis time was obtained from existing analytical methods (40–105 min) for gallic acid, tea catechins including O-methylated catechins and epimers of epicatechins, as well as purine alkaloids. Detection limits were generally on the order of 0.1–1.0 ng for most components at the applied wavelength of 280 nm. Method replication generally resulted in intraday and interday peak area variation of <6% for most tested components in green, Oolong, black, and pu-erh teas. Recovery rates were generally within the range of 92–106% with RSDs less than 4.39%. Therefore, advancement has been readily achievable with commonly used chromatography equipments in the present study, which will facilitate the analytical, clinical, and other studies of tea catechins.  相似文献   

16.
Feng  Lei  Zhao  Fengsheng 《Chromatographia》2009,69(11):1325-1332

A novel low-pressure preparative electrochromatography apparatus was set up to implement the separation of small polar compounds. In this apparatus, a distinguished bottom “T”-shape electrode chamber was designed to remove electrolysis gas and meanwhile enable the apparatus to separate small-molecule solutes. Partial separation of the model sample, crude tea extract (mainly containing (−)-epigallocatechin gallate, (−)-epicatechin gallate and caffeine) by hydrophobic macroporous adsorption column (maximum 40 cm × 20 mm ID) with electric field (maximum 111.0 V cm−1) proved the effectiveness of the electrochromatography apparatus. The fact that the total solute recoveries were over 90% showed the qualification of the apparatus for preparative purpose. The stronger the electric field, the more obvious the electrically induced effects. An alternative in-liquid load manner (loading sample in liquid after the electric field was applied) was proposed, which could further enhance the electrically induced effects than in-column load manner (loading sample on resin bed before applying electric field). Scale-up on electrochromatography by column diameter from 6 to 20 mm resulted in similar electrically induced effects on peak resolutions. All of these investigations revealed that the new technology was feasible and promising on separating small polar compounds, for it inherits the advantages of both liquid chromatography and electrophoresis.

  相似文献   

17.
The chemical composition of eight Tunisian Rosmarinus officinalis L. populations (A–H) from different bioclimatic areas has been examined by gas chromatography (GC) and GC-mass spectrometry. The essential oils are characterised by high amounts of oxygenated monoterpenes (58.2–71.7%) followed by monoterpene hydrocabons (15.1–26.7%). 1,8-Cineole, camphor, α-pinene and borneol are the main representative components. The antioxidant activity was investigated by 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), ferric reducing ability power assay and β-carotene bleaching test. Samples showed antiradical activity by inhibiting DPPH radical with IC50 values ranging from 375.3 to 592.8 μg mL? 1 for samples F and A, respectively. Sample A also showed the most promising activity in β-carotene bleaching test (IC50 of 31.9 μg mL? 1). The essential oils were also screened for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. Sample G showed the highest activity against AChE (IC50 of 64.7 μg mL? 1) while sample D (IC50 of 29.5 μg mL? 1) exhibited the most potent activity against BChE.  相似文献   

18.
This study reports on the development of a fast and efficient method based on headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography–tandem mass spectrometry (GC–MS/MS) for simultaneous analysis of 128 volatile or semi-volatile pesticide residues belonging to nine classes of pesticides. The important factors related to HS-SPME performance were optimized; these factors include fiber types, water volume, ion strength, extraction temperature, and extraction time. The best extraction conditions include a PDMS/DVB fiber, and analytes were extracted at 90 °C for 60 min from 1 g of tea added to 5 mL of 0.2 g mL?1 NaCl solution. The methodology was validated using tea samples spiked with pesticides at three concentration levels (10, 50, and 100 μg kg?1). In green tea, oolong tea, black tea, and puer tea, 82.8, 88.3, 79.7, and 84.3% of the targeted pesticides meet recoveries ranging from 70 to 120% with a relative standard deviation of?≤?20%, respectively, when spiked at a level of 10 μg kg?1. Limits of quantification in this method for most of the pesticides were 1 or 5 μg kg?1, which are far below their maximum residue limits prescribed by EU. The optimized method was employed to analyze 30 commercial samples obtained from local markets; 17 pesticide residues were detected at concentrations of 2–452 μg kg?1. Chlorpyrifos was the most detected pesticide in 80% of the samples, and the highest concentration of dicofol (452 μg kg?1) was found in a puer tea. This is the first time to find that the optimized extraction temperature for pesticide residues is 90 °C, which is much higher than other reported HS-SPME extraction conditions in tea samples. This developed method could be used to screen over one hundred volatile or semi-volatile pesticide residues which belong to multiple classes in tea samples, and it is an accurate and reliable technique.  相似文献   

19.
Roh C  Jo SK 《Talanta》2011,85(5):2639-2642
In this study, we elucidated a small molecule inhibitor on viral protein NS5B identified through a high-throughput screening strategy using optical nanoparticle-based RNA oligonucleotide. We have previously shown that quantum dots (QDs)-RNA oligonucleotide can specifically recognize the HCV viral proteins. We have also demonstrated that conjugated QDs-RNA oligonucleotide can specifically and sensitively interact with designed biochips [1] and [2]. Among the flavonoids examined, (−)-epigallocatechin gallate (EGCG) demonstrated a remarkable inhibition activity on HCV viral protein, NS5B. (−)-Epigallocatechin gallate, at 0.005 μg mL−1 or more, concentration-dependently attenuated the binding affinity on a designed biochip as evidenced by QDs-RNA oligonucleotide. At a concentration of 0.1 μg mL−1, (−)-epigallocatechin gallate showed a 50% inhibition activity on QDs-RNA oligonucleotide biochip assay. We screened a small molecule inhibitor on the viral protein, NS5B, identified through a high-throughput screening strategy using on-chip optical nanoparticle-based RNA oligonucleotide on chip. In this designed strategy, the convenient and efficient screening and development of an on-chip viral protein inhibitor using a QDs-RNA oligonucleotide assay is achievable with high sensitivity and simplicity. In addition, this platform is expected to be applicable toward the inhibitor screening of other types of diseases.  相似文献   

20.
A novel, rapid and specific ultra performance liquid chromatography-photo diode array detection method was developed for the simultaneous determination of 2,3,5,4′-tetrahydroxystilbene-2-O-β-d-glucoside (TSG), emodin-8-O-β-d-glucoside (EMG), emodin (EM) and physcion (PS). The chromatographic separation was performed on an Acquity BEH C18 column (100 × 2.1 mm i.d., 1.7 μm). The mobile phase was a mixture of 0.3% acetic acid–water and 0.3% acetic acid–acetonitrile employing gradient elution at the flow rate of 0.4 mL min?1. The four compounds behaved linearly in the concentration range between 60.80–3040.00 μg mL?1 (TSG), 0.50–25.00 μg mL?1 (EMG), 2.16–108.00 μg mL?1 (EM) and 1.56–78.00 μg mL?1 (PS), respectively with correlation coefficients >0.999. The precision of the method were below 5% RSD. Recoveries of the four compounds ranged from 95.71 to 102.97%, with RSD values less than 2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号