首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solvent versatility of Chiralpak IA, a new chiral stationary phase (CSP) containing amylose tris(3,5-dimethylphenylcarabamate) immobilized onto silica gel, is investigated for the enantioselective separation of a set of cyclopropane derivatives using ethyl acetate or dichloromethane (DCM) as non-standard mobile phase eluent and diluent, respectively in high-performance liquid chromatography (HPLC). A comparison of the separation of cyclopropanes on both immobilized and coated amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA and Chiralpak AD, respectively) in HPLC using a mixture of n-hexane/2-propanol (90/10 and 99/1, v/v) as mobile phase with a flow rate of 0.5 ml/min and UV detection at 254 nm, is demonstrated. The optimized method of separation is used for an online HPLC monitoring for the Rh(II)-catalyzed asymmetric intermolecular cyclopropanations in dichloromethane. Direct analysis techniques without further purification, workup or removal of dichloromethane were summarized. The method provides an easy and direct determination of the enantiomeric excess of the cyclopropanes and selectivity of the catalyst used without any further work up.  相似文献   

2.
Ghanem A  Hoenen H  Aboul-Enein HY 《Talanta》2006,68(3):602-609
A direct liquid chromatographic enantioselective separation of a set of β-blocker enantiomers on the new immobilized and conventional coated amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA and Chiralpak AD, respectively) was studied using methanol as mobile phase and ethanolamine as an organic modifier (100:0.1, v/v). The separation, retention and elution order of the enantiomers on both columns under the same conditions were compared. The effect of the immobilization of the amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase on silica (Chiralpak IA) on the chiral recognition ability was noted when compared to the coated phase (Chiralpak AD) which possesses a higher resolving power than the immobilized one (Chiralpak IA). A few racemates, which were not or poorly resolved on the immobilized Chiralpak IA were most efficiently resolved on the coated Chiralpak AD. However, the immobilized phase withstand solvents like dichloromethane when used as an eluent or as a dissolving agent for the analyte. The versatility of the immobilized Chiralpak IA in monitoring reactions performed in dichloromethane using direct analysis techniques without further purification, workup or removal of dichloromethane was studied on a representative example consisting of the lipase-catalyzed irreversible transesterification of a β-blocker using either vinylacetate or isopropenyl acetate as acyl donor in dichloromethane as organic solvent.  相似文献   

3.
The enantioselective resolution of a set of racemic acidic compounds such as non-steroidal anti-inflammatory drugs (NSAIDs) of the group arylpropionic acid derivatives is demonstrated. Thus, a set of lipases were screened and manipulated in either the esterification or hydrolysis mode for the enantioselective kinetic resolution of these racemates in non-standard organic solvents. The accurate determination of the enantiomeric excesses of both substrate and product during such reaction is demonstrated. This was based on the development of a direct and reliable enantioselective high performance liquid chromatography (HPLC) procedure for the simultaneous baseline separation of both substrate and product in one run without derivatization. This was achieved using the immobilized chiral stationary phase namely Chiralpak IB, a 3,5-dimethylphenylcarbamate derivative of cellulose (the immobilized version of Chiralcel OD) which proved to be versatile for the monitoring of the lipase-catalyzed kinetic resolution of racemates in non-standard organic solvents.  相似文献   

4.
The solvent versatility of Chiralpak IA (amylose tris(3,5-dimethylphenylcarbamate)), Chiralpak IB (cellulose tris(3,5-dimethylphenylcarbamate)) and Chiralpak IC (cellulose tris(3,5-dichlorophenylcarbamate)) immobilized onto silica gel, are investigated for the enantioselective separation of a set of acidic drugs in liquid chromatography. Non-standard LC organic solvents like dichloromethane, ethyl acetate, tetrahydrofuran, methyl-tert-butyl ether were used in mobile phase compositions and/or diluent agent for the analyte on all new columns. Furthermore, the enantioselective separations of the reported compounds were compared on both immobilized columns (Chiralpak IA and IB) and their conventionally coated versions (Chiralpak AD-H and Chiralcel OD-H, respectively), using a mixture of n-hexane/2-PrOH/TFA (80:20:0.1 v/v/v). The versatility of the immobilized Chiralpak IB in monitoring reactions performed in non-standard solvent was studied on a representative example consisting of the lipase-catalyzed enantioselective esterification of flurbiprofen with n-butanol in methyl-tert-butyl ether as organic solvent.  相似文献   

5.
The increasing demands for the production of enantiomerically pure compounds in the field of pharmacology, chemistry, biotechnology, chemical engineering, etc., have made enantioselective separations to become one of the most important analytical tasks. H…  相似文献   

6.
The couple of chiral sulfur compounds α-lipoic acid (ALA)/α-dihydrolipoic acid (DHALA) has attracted considerable attention in recent years owing to its remarkable anti-inflammatory and antioxidant properties. It is well known that the chirality of the C6 plays a key role in determining the biological activity of ALA. The natural occurring (R)-ALA enantiomer is an essential cofactor for key oxidative metabolism enzyme complexes and, after oral administration of the racemic mixture, it shows higher plasma concentration than (S)-ALA. Differently, the in vivo enantioselective action difference between the enantiomers of DHALA has not yet been studied. This lacking is perhaps due to the unavailability of analytical methods capable of determining the enantiomeric composition of biological samples during pharmacokinetic and pharmacodynamic events. In the present work, the direct and baseline enantioresolution of both chiral acids by HPLC on two amylose-derived chiral stationary phases is presented. The proposed chiral enantioselective protocol, therefore, does not require pre- or on-column derivatization. The performance of the coated Chiralpak AS-H CSP and the new immobilized Chiralpak IH-3 CSP, which have the same chiral selector amylose tris-[(S)-α-methylbenzylcarbamate], were compared using conventional normal-phase mobile phases containing ethanol or 2-propanol as alcoholic solvents and a fixed percentage of trifluoroacetic acid. Nonconventional eluents containing dichloromethane, ethyl acetate, and 2-methyltetrahydrofuran as organic cosolvents were applied in the separation of the enantiomers of two carboxylic acids on the immobilized Chiralpak IH-3 CSP. The effect of the column temperature was carefully evaluated in order to improve enantioselectivity. Adequate amounts of enantiomers were isolated by an analytical-size Chiralpak IH-3 column and submitted to chiroptical measurements. The absolute configuration assignment of the isolated enantiomers was determined by a multidisciplinary procedure based on the comparison of the experimental and calculated chiroptical properties.  相似文献   

7.
《中国化学快报》2023,34(3):107606
In this work, a series of chiral phenethylamine synergistic tricarboxylic acid modified β-cyclodextrin bonded stationary phase for high performance liquid chromatography (HPLC) were synthesized via a simple one-pot synthesis approach. Various racemates (aryl alcohols, flavanones, triazoles, benzoin, etc.) were well separated on the tricarboxylic acid modified chiral stationary phases in both normal and reversed modes with good reproducibility and stability, and the influence of mobile phase composition on resolution (Rs) were deeply investigated. The RSD values of Rs for repeatability and column-to-column were below 1.28% and 3.05%, respectively. Hence, the fabrication of tricarboxylic acid modified chiral stationary phase (CSPs) is a new efficient strategy to improve the application of β-cyclodextrin as CSPs in the field of chromatography.  相似文献   

8.
《Tetrahedron: Asymmetry》2006,17(23):3248-3264
The terpenoid chiral selectors dehydroabietic acid, 12,14-dinitrodehydroabietic acid and friedelin have been covalently linked to silica gel yielding three chiral stationary phases CSP 1, CSP 2 and CSP 3, respectively. The enantiodiscriminating capability of each one of these phases was evaluated by HPLC with four families of chiral aromatic compounds composed of alcohols, amines, phenylalanine and tryptophan amino acid derivatives and β-lactams. The CSP 3 phase, containing a selector with a large friedelane backbone is particularly suitable for resolving free alcohols and their derivatives bearing fluorine substituents, while CSP 2 with a dehydroabietic architecture is the only phase that efficiently discriminates 1,1′-binaphthol atropisomers. CSP 3 also gives efficient resolution of the free amines. All three phases resolve well the racemates of N-trifluoracetyl and N-3,5-dinitrobenzoyl phenylalanine amino acid ester derivatives. Good enantioseparation of β-lactams and N-benzoyl tryptophan amino acid derivatives was achieved on CSP 1.In order to understand the structural factors that govern the chiral molecular recognition ability of these phases, molecular dynamics simulations were carried out in the gas phase with binary diastereomeric complexes formed by the selectors of CSP 1 and CSP 2 and several amino acid derivatives. Decomposition of molecular mechanics energies shows that van der Waals interactions dominate the formation of the diastereomeric transient complexes while the electrostatic binding interactions are primarily responsible for the enantioselective binding of the (R)- and (S)-analytes. Analysis of the hydrogen bonds shows that electrostatic interactions are mainly associated with the formation of N–H⋯OC enantioselective hydrogen bonds between the amide binding sites from the selectors and the carbonyl groups of the analytes. The role of mobile phase polarity, a mixture of n-hexane and propan-2-ol in different ratios, was also evaluated through molecular dynamics simulations in explicit solvent.  相似文献   

9.
《Tetrahedron: Asymmetry》2000,11(10):2125-2131
Syntheses of (R)-4,4,4-trifluoro-2-mercaptobutyric acid from (S)-malic acid via a Mitsunobu reaction and from (rac)-thiomalic acid on enzymatic resolution, using Pseudomonas cepacia (Amano lipase PS), are described. A new method for direct determination of ees for (R)- and (S)-4,4,4-trifluoro-2-mercaptobutyric acid derivatives by HPLC on a polysaccharide phase is disclosed.  相似文献   

10.
《Tetrahedron: Asymmetry》2007,18(20):2399-2408
This paper reports a new chiral separation technology—biphasic recognition chiral extraction for the separation of aromatic acid enantiomers such as α-cyclohexyl-mandelic acid (CHMA) and naproxen (NAP). The biphasic recognition chiral extraction system was established by adding hydrophobic d(l)-isobutyl tartrate in 1,2-dichloroethane organic phase and hydrophilic β-cyclodextrin (β-CD) derivative in aqueous phase, which preferentially recognize the (R)-enantiomer and (S)-enantiomer, respectively. These studies involve an enantioselective extraction in a biphasic system, where aromatic acid enantiomers form complexes with the β-cyclodextrin derivative in the aqueous phase and d(l)-isobutyl tartrate in the organic phase, respectively. Factors affecting the extraction mechanism are analyzed, namely the influence of the concentrations of the extractants and aromatic acid enantiomers, the types of the extractants, pH, and temperature. The experimental results show that the biphasic recognition chiral extraction is of much stronger chiral separation ability than the monophasic recognition chiral extraction, which utilizes the cooperations of the forces of the tartrate and the β-CD derivative. Hydroxypropyl-β-cyclodextrin (HP-β-CD), hydroxyethyl-β-cyclodextrin (HE-β-CD), and methyl-β-cyclodextrin (ME-β-CD) have stronger recognition abilities for the (S)-aromatic acid enantiomers than those for (R)-aromatic acid enantiomers, among which HP-β-CD has the strongest ability. d-Isobutyl tartrate preferentially recognizes (R)-CHMA and (S)-NAP, while l-isobutyl tartrate preferentially recognizes (S)-CHMA and (R)-NAP. The maximum enantioselectivities of CHMA and NAP are 2.49 and 1.65, under conditions at which the pH values of the aqueous phases are 2.7 and 2.5, at the ratio of 2:1 of [isobutyl tartrate] to [HP-β-CD].  相似文献   

11.
The enantiomers of 1-phenyl-1,2,3,4-tetrahydroisoquinoline have been directly separated on polysaccharide-based chiral stationary phases (CSPs). The normal phase separation of (S)- and (R)-1-phenyl-1,2,3,4-tetrahydroisoquinoline was accomplished by screening of the immobilized Chiralpak IC column with different eluents. The effect of mobile phase type on retention, selectivity and resolution was studied. 2-Propanol or ethanol/n-hexane/ethanolamine mixtures were applied as mobile phases by screening of following polysaccharide-based immobilized (Chiralpak IA, Chiralpak IC) and coated (Lux Cellulose-1, Lux Cellulose-2, Lux Amylose-2) CSPs. Polar organic and reversed-phase conditions were also tested for direct enantioseparation of 1-phenyl-1,2,3,4-tetrahydroisoquinoline.  相似文献   

12.
Three-phase electrodes in combination with square-wave voltammetry are applied to study the transfer kinetics of chiral anions from water to the chiral 2-octanol. The experimental system used consists of a pyrolytic graphite electrode partly modified with a thin film of one of the enantiomers of 2-octanol, which was immersed into an aqueous solution containing anions of chiral 2-chloropropionic acid, 2-bromopropionic acid, or lactic acid. It is demonstrated that the kinetics of the ion transfer is a stereoselective. The rate of the ion transfer is higher when uncomplimentary transferring ion–solvent chiral isomers are used, i.e., (R)-ion and (S)-solvent, or (S)-ion and (R)-solvent. To the best of our knowledge this is the first evidence for the difference in the ion transfer kinetics of chiral isomers across water/chiral organic solvent interface.  相似文献   

13.
Besides the well-known papain, lipolytic activity is another interesting enzymatic activity present in latex from Carica papaya. This lipolytic activity is strongly attached to the latex solid phase, resulting in a naturally immobilized biocatalyst. In this work we describe the kinetic resolution of (R,S)-2-bromophenylacetic acid octyl ester by Carica papaya crude latex and two partially purified latex fractions. Several parameters, such as substrate concentration and solvent effects were studied. The best results were obtained using decane as solvent with 50 mM of substrate and 50 mg/mL enzyme/reaction medium; under these conditions, a high enantioselectivity (E >200) was obtained with crude latex. A twofold increase of the initial rate maintaining E >200 was obtained using purified fractions without protease and without esterase. Lipase from Carica papaya latex is the most enantioselective wild-type enzyme ever described for the studied reaction.  相似文献   

14.
高效液相色谱(HPLC)被广泛认为是分离制备光学纯单一对映体最有效的方法。在高效液相色谱手性拆分中,手性固定相的性能直接影响到色谱柱的手性分离能力。在众多手性固定相中,键合型手性固定相具有溶剂耐受性好,分离模式灵活等优点,是很重要的一大类手性固定相。本文主要针对大分子键合型手性固定相,包括多糖衍生物键合型手性固定相、蛋...  相似文献   

15.
A novel approach to 2-azabicyclo[2.2.1]heptane-1-carboxylic acid (2,4-ethanoproline) is reported starting from (2S,4R)-4-hydroxyproline. The synthetic scheme consists of 10 steps and results in 22% total yield of the title compound. Enantiomeric purity of the product is checked by chiral stationary phase HPLC.  相似文献   

16.
Combinatorial approaches together with high-throughput screening have been used to develop highly selective stationary phases for chiral recognition. Libraries of potential chiral selectors have been prepared by the Ugi multicomponent condensation reactions and screened for their enantioselectivity using the reciprocal approach involving a chiral stationary phase with immobilized model target compound N-(3,5-dinitrobenzoyl)-alpha-l-leucine. The best candidates were identified from the library of phenyl amides of 2-oxo-azetidineacetic acid derivatives. This screening also enabled specification of the functionalities of the selector desired to achieve the highest level of chiral recognition. The substituents of the phenyl ring adjacent to the chiral center of the selector candidates exhibited the most profound effect on the chiral recognition. The best candidate was then synthesized on a larger scale, resolved into single enantiomers using preparative enantioselective HPLC, and attached to porous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) beads via an ester linkage to afford the desired stationary phase. Selectivities alpha as high as 3.2 were found for the separation of a variety of amino acid derivatives.  相似文献   

17.
Various cyclic meso-imides have been desymmetrised via enantioselective reduction using two chiral oxazaborolidine catalysts derived from (1R,2S)-cis-1-amino-indan-2-ol followed by the reduction of the hydroxylactam product to give the γ-lactam. The enantiomeric excesses were shown to be 27-99% by chiral HPLC and chiral GC of the γ-lactam products with the nitrogen substituent playing a pivotal role in determining yield and selectivity.  相似文献   

18.
《Tetrahedron: Asymmetry》2000,11(3):835-841
Chiral C2-symmetric diphenylselenophosphoramides 1 and 2 were prepared from the reaction of diphenylselenophosphinic chloride with (1R,2R)-(−)-1,2-diaminocyclohexane and (1R,2R)-(+)-1,2-diphenylethylenediamine, respectively, in high yields. Another novel chiral ligand 3 was prepared from the reaction of diphenylselenophosphinic chloride with (R)-(+)-1,1′-binaphthyl-2,2′-diamine using butyllithium as the base. The ligands were used as catalytic chiral ligands in the titanium(IV) alkoxide-promoted enantioselective addition reaction of diethylzinc to aldehydes.  相似文献   

19.
《Tetrahedron: Asymmetry》2000,11(3):773-779
Chiral C2-symmetric diphenylthiophosphoramides 1 and 2 were prepared in high yields from the reaction of diphenylthiophosphinic chloride with (1R,2R)-(−)-1,2-diaminocyclohexane and (1R,2R)-(+)-1,2-diphenylethylenediamine, respectively. Another novel chiral ligand 4 was prepared from reaction of diphenylthiophosphinic chloride with (R)-(+)-1,1′-binaphthyl-2,2′-diamine using butyllithium as a base. They were used as catalytic chiral ligands in the silver(I)-promoted enantioselective allylation reaction of aldehydes with allyltributyltin.  相似文献   

20.
《Tetrahedron: Asymmetry》2000,11(14):2955-2964
Diisopropyl 2-azido-1-acetoxyethylphosphonate (±)-7 was hydrolysed with high enantioselectivity by lipase SP 524 to give α-hydroxyphosphonate (S)-(−)-6 and ester (R)-(−)-7, which was saponified to give (R)-(+)-6. The two α-hydroxyphosphonates (R)- and (S)-6 were transformed into l-phosphaisoserine and l-phosphaserine, respectively. Their enantiomeric excesses were determined to be 97% by HPLC on an chiral stationary phase. A mixture of all four stereoisomeric amino-hydroxyethylphosphonic acids can be separated by non-aqueous capillary electrophoresis with quinine carbamate as the chiral ion pair agent applying the partial filling technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号