首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The electronic properties, specifically, the dipole and quadrupole moments and the ionization energies of benzene (Bz) and hydrogen cyanide (HCN), and the respective binding energies, of complexes of Bz(HCN)(1-4), have been studied through MP2 and OVGF calculations. The results are compared with the properties of benzene-water complexes, Bz(H(2)O)(1-4), with the purpose of analyzing the electronic properties of microsolvated benzene, with respect to the strength of the CH/π and OH/π hydrogen-bond (H-bond) interactions. The linear HCN chains have the singular ability to interact with the aromatic ring, preserving the symmetry of the latter. A blue shift of the first vertical ionization energies (IEs) of benzene is observed for the linear Bz(HCN)(1-4) clusters, which increases with the length of the chain. NBO analysis indicates that the increase of the IE with the number of HCN molecules is related to a strengthening of the CH/π H-bond, driven by cooperative effects, increasing the acidity of the hydrogen cyanide H atom involved in the π H-bond. The longer HCN chains (n ≥ 3), however, can bend to form CH/N H-bonds with the Bz H atoms. These cyclic structures are found to be slightly more stable than their linear counterparts. For the nonlinear Bz(HCN)(3-4) and Bz(H(2)O)(2-4) complexes, an increase of the binding energy with the number of solvent molecules and a decrease of the IE of benzene, relative to the values for the Bz(HCN) and Bz(H(2)O) complexes, respectively, are observed. Although a strengthening of the CH/π and OH/π H-bonds, with increasing n, also takes place for the Bz(H(2)O)(2-4) and Bz(HCN)(3-4) nonlinear complexes, Bz proton donor, CH/O, and CH/N interactions are at the origin of this decrease. Thus CH/π and OH/π H-bonds lead to higher IEs of Bz, whereas the weaker CH/N and CH/O H-bond interactions have the opposite effect. The present results emphasize the importance of both aromatic XH/π (X = C, O) and CH/X (X = N, O) interactions for understanding the structure and electronic properties of Bz(HCN)(n) and Bz(H(2)O)(n) complexes.  相似文献   

2.
Two types of transition metal-benzene anion complexes, (titanium)(n)(benzene)(m)? and (cobalt)(n)(benzene)(m)? (n ≤ 2, m ≤ 3) have been determined using density functional theory. The photoelectron spectra of Ti(n)Bz(m)? and Co(n)Bz(m)? (n ≤ 2, m ≤ 3) were discussed from the perspective of quantum chemical calculations of the vertical detachment energies (VDEs) of several low-energy isomers obtained by the structural optimization procedure. The binding of Ti and Co atoms to benzene molecules is accounted by 3d-π bonds, as revealed by the molecular orbitals. The topology of the electronic density has been analyzed, suggesting that the C-C bonds were weakened in the transition metal-benzene complexes in comparison to those in free benzene. Spin density distribution results show the spin densities for Ti(n)Bz(m)? and Co(n)Bz(m)? (n ≤ 2, m ≤ 3) reside mainly on the metal Ti and Co centers (70%-90%). A shift to lower magnetic moment with respect to the pure titanium/cobalt cluster anions indicates the solvent benzene molecule acts to demagnetize the bare titanium/cobalt cluster anions.  相似文献   

3.
The N-H···π hydrogen bond is an important intermolecular interaction in many biological systems. We have investigated the infrared (IR) and ultraviolet (UV) spectra of the supersonic-jet cooled complex of pyrrole with benzene and benzene-d(6) (Pyr·Bz, Pyr·Bz-d(6)). DFT-D density functional, SCS-MP2 and SCS-CC2 calculations predict a T-shaped and (almost) C(s) symmetric structure with an N-H···π hydrogen bond to the benzene ring. The pyrrole is tipped by ω(S(0)) = ±13° relative to the surface normal of Bz. The N···ring distance is 3.13 ?. In the S(1) excited state, SCS-CC2 calculations predict an increased tipping angle ω(S(1)) = ±21°. The IR depletion spectra support the T-shaped geometry: The NH stretch is redshifted by -59 cm(-1), relative to the "free" NH stretch of pyrrole at 3531 cm(-1), indicating a moderately strong N-H···π interaction. The interaction is weaker than in the (Pyr)(2) dimer, where the NH donor shift is -87 cm(-1) [Dauster et al., Phys. Chem. Chem. Phys., 2008, 10, 2827]. The IR C-H stretch frequencies and intensities of the Bz subunit are very similar to those of the acceptor in the (Bz)(2) dimer, confirming that Bz acts as the acceptor. While the S(1)←S(0) electronic origin of Bz is forbidden and is not observable in the gas-phase, the UV spectrum of Pyr·Bz in the same region exhibits a weak 0 band that is red-shifted by 58 cm(-1) relative to that of Bz (38?086 cm(-1)). The origin appears due to symmetry-breaking of the π-electron system of Bz by the asymmetric pyrrole NH···π hydrogen bond. This contrasts with (Bz)(2), which does not exhibit a 0 band. The Bz moiety in Pyr·Bz exhibits a 6a band at 0 + 518 cm(-1) that is about 20× more intense than the origin band. The symmetry breaking by the NH···π hydrogen bond splits the degeneracy of the ν(6)(e(2g)) vibration, giving rise to 6a' and 6b' sub-bands that are spaced by ~6 cm(-1). Both the 0 and 6 bands of Pyr·Bz carry a progression in the low-frequency (10 cm(-1)) excited-state tipping vibration ω', in agreement with the change of the ω tipping angle predicted by SCS-MP2 and SCS-CC2 calculations.  相似文献   

4.
The target of this investigation is to characterize by a recently developed methodology, the main features of the first solvation shells of alkaline ions in nonpolar environments due to aromatic rings, which is of crucial relevance to understand the selectivity of several biochemical phenomena. We employ an evolutionary algorithm to obtain putative global minima of clusters formed with alkali-ions (M(+)) solvated with n benzene (Bz) molecules, i.e., M(+)-(Bz)(n). The global intermolecular interaction has been decomposed in Bz-Bz and in M(+)-Bz contributions, using a potential model based on different decompositions of the molecular polarizability of benzene. Specifically, we have studied the microsolvation of Na(+), K(+), and Cs(+) with benzene molecules. Microsolvation clusters up to n = 21 benzene molecules are involved in this work and the achieved global minimum structures are reported and discussed in detail. We observe that the number of benzene molecules allocated in the first solvation shell increases with the size of the cation, showing three molecules for Na(+) and four for both K(+) and Cs(+). The structure of this solvation shell keeps approximately unchanged as more benzene molecules are added to the cluster, which is independent of the ion. Particularly stable structures, so-called "magic numbers", arise for various nuclearities of the three alkali-ions. Strong "magic numbers" appear at n = 2, 3, and 4 for Na(+), K(+), and Cs(+), respectively. In addition, another set of weaker "magic numbers" (three per alkali-ion) are reported for larger nuclearities.  相似文献   

5.
(Nickel)(n)(benzene)(m) (-) cluster anions were studied by both mass spectrometry and anion photoelectron spectroscopy. Only Ni(n)(Bz)(m) (-) species for which n > or =m were observed in the mass spectra. No single-nickel Ni(1)(Bz)(m) (-) species were seen. Adiabatic electron affinities, vertical detachment energies, and second transition energies were determined for (n,m)=(2,1), (2,2), (3,1), and (3,2). For the most part, calculations on Ni(n)(Bz)(m) (-) species by B. K. Rao and P. Jena [J. Chem. Phys. 117, 5234 (2002)] were found to be consistent with our results. The synergy between their calculations and our experiment provided enhanced confidence in the theoretically implied magnetic moments of several nickel-benzene complexes. The magnetic moments of small nickel clusters were seen to be extremely sensitive to immediate molecular environmental effects.  相似文献   

6.
The stepwise binding energies (DeltaHdegree(n-1,n)) of 1-8 water molecules to benzene(.+) [Bz(.+)(H2O)n] were determined by equilibrium measurements using an ion mobility cell. The stepwise hydration energies, DeltaHdegree(n-1,n), are nearly constant at 8.5 +/- 1 kcal mol-1 from n = 1-6. Calculations show that in the n = 1-4 clusters, the benzene(.+) ion retains over 90% of the charge, and it is extremely solvated, that is, hydrogen bonded to an (H2O)n cluster. The binding energies and entropies are larger in the n = 7 and 8 clusters, suggesting cyclic or cage-like water structures. The concentration of the n = 3 cluster is always small, suggesting that deprotonation depletes this ion, consistent with the thermochemistry since associative deprotonation Bz(.+)(H2O)(n-1) + H2O-->C6H5. + (H2O)nH+ is thermoneutral or exothermic for n > or = 4. Associative intracluster proton transfer Bz(.+)(H2O)(n+1) + H2O-->C6H5.(H2O)nH+ would also be exothermic for n > or = 4, but lack of H/D exchange with D2O shows that the proton remains on C6H6(.+) in the observed Bz(.+)(H2O)n clusters. This suggests a barrier to intracluster proton transfer, and as a result, the [Bz(.+)(H2O)n]* activated complexes either undergo dissociative proton transfer, resulting in deprotonation and generation of (H2O)nH+, or become stabilized. The rate constant for the deprotonation reaction shows a uniquely large negative temperature coefficient of K = cT(-67+/-4) (or activation energy of -34+/- 1 kcal mol-1), caused by a multibody mechanism in which five or more components need to be assembled for the reaction.  相似文献   

7.
The C 1s -->pi* transition in molecular benzene and benzene clusters is investigated by photoion yields at high energy resolution. The vibrationally resolved band shows the same shape in clusters as in the bare molecule, but it is redshifted by 50 meV in small clusters, i.e. near the threshold of cluster formation. This redshift increases to 70 meV with increasing cluster size. The results are assigned in comparison with ab initio calculations on model structures of dimers, trimers, and tetramers. These indicate that different carbon sites in the molecular moieties give rise to distinct spectral shifts, where carbon sites that are pointing to the pi-system of another molecule show a larger redshift than the other ones. Such structural properties are found in solid benzene, so that the gas-to-solid shift of C 1s -->pi* excited benzene is derived to be a redshift which is of the order of 100-180 meV.  相似文献   

8.
An ab initio study was performed in clusters up to four H(2)S molecules and benzene using calculations at MP26-31+G(*) and MP2/aug-cc-pVDZ levels. Differences between both sets of calculations show the importance of using large basis sets to describe the intermolecular interactions in this system. The obtained binding energies reflect that benzene has not the same behavior in H(2)S as in water, pointing to a higher solubility of this molecule in H(2)S than in water. The Bz-cluster binding energy was fitted to an asymptotic representation with a maximum value of the energy of -8.00 kcal/mol that converges in a cluster with 12 H(2)S molecules. The obtained intermolecular distance in the Bz-H(2)S dimer is similar to the experimental value; however, the difference is much larger for the angles defining the orientation. The influence of benzene produces a distortion of the (H(2)S)(n) clusters, so the intermolecular distances change with regard to the (H(2)S)(n) isolated clusters. Frequency shifts are larger in clusters with benzene than without it. In the smallest clusters the shift associated to the stretching of the S-H bonded to benzene is the largest one, but for the cluster with three H(2)S molecules this stretching is combined with the other S-H stretching of the molecule so the resulting shift is not the largest one.  相似文献   

9.
First-principles calculations based on the generalized gradient approximation to the density functional theory are performed to explore the global geometries, ground-state spin multiplicities, relative stabilities, and energetics of neutral and anionic V(n)(Bz)(m) (n=1-3, m=1-4, with n相似文献   

10.
Benzene-methanol cluster structures were investigated with theoretical chemistry methods to describe the microsolvation of benzene and the benzene-methanol azeotrope. Benzene-methanol (MeOH) clusters containing up to six methanol molecules have been calculated by ab initio [MP2/6-311++G(d,p)//MP2/6-31+G(d,p) + BSSE correction] method. The BSSE was found quite large with this basis set, hence, different extrapolation schemes in combination with the aug-cc-pVxZ basis sets have been used to estimate the complete basis set limit of the MP2 interaction energy [ΔE(MP2/CBS)]. For smaller clusters, n ≤ 3, DFT procedures (DFTB+, MPWB1K, M06-2X) have also been applied. Geometries obtained for these clusters by M06-2X and MP2 calculations are quite similar. Based on the MP2/CBS results, the most stable C(6)H(6)(MeOH)(3) cluster is characterized by a hydrogen bonded MeOH trimer chain interacting with benzene via π···H-O and O···H-C(benzene) hydrogen bonds. Larger benzene-MeOH clusters with n ≥ 4 consist of cyclic (MeOH)(n) subclusters interacting with benzene by dispersive forces, to be denoted by C(6)H(6) + (MeOH)(n). Interaction energies and cooperativity effects are discussed in comparison with methanol clusters. Besides MP2/CBS calculations, for selected larger clusters the M06-2X/6-311++G(d,p)//M06-2X/6-31+G(d,p) procedure including the BSSE correction was also used. Interaction energies obtained thereby are usually close to the MP2/CBS limit. To model the benzene-MeOH azeotrope, several structures for (C(6)H(6))(2)(MeOH)(3) clusters have been calculated. The most stable structures contain a tilted T-shaped benzene dimer interacting by π···H-O and O···H-C (benzene) hydrogen bonds with a (MeOH)(3) chain. A slightly less negative interaction energy results for a parallel displaced benzene sandwich dimer with a (MeOH)(3) chain atop of one of the benzene molecules.  相似文献   

11.
We studied the stepwise hydration and solvent-mediated deprotonation of the benzene*+ cation (Bz*+) and found several unusual features. The solvent binding energies DeltaH on-1,n for the reactions Bz*+(H2O)n-1 + H2O --> Bz*+(H2O)n are nearly constant at 9 +/- 1 kcal mol-1 for n = 1 to 8. We observed a remarkable sudden decrease in the entropy of association accompanying the formation of Bz*+(H2O)7 and Bz*+(H2O)8, indicating strong orientational restraint in the hydration shells of these clusters consistent with the formation of cagelike structures. We observed the size-dependent deprotonation of Bz*+ in a cooperative multibody process, where n H2O molecules (n >/= 4) can remove a proton from Bz*+ to form protonated water clusters. We measured, for the first time, the temperature dependence of such a process and found a negative temperature coefficient of a magnitude unprecedented in any chemical reaction, of the form k = AT-67+/- 4, or in an Arrhenius form having an activation energy of -34 +/- 1 kcal mol-1. The temperature effect may be explained by Bz*+ and four H2O molecules needing to be assembled from gas-phase components to form the reactive species. Such large temperature effects may be therefore general in solvent cluster-mediated reactions.  相似文献   

12.
Ar clustering dynamics around the metal-benzene sandwich complex, bis(eta (6)-benzene)chromium: Cr(Bz) 2, is found to occur in two distinct regimes. The shift of the ionization potential (IP) upon the addition of Ar is measured to be 151 cm (-1), and it is constant until the number of Ar solvents ( n) becomes 6. The IP shift per Ar is found to be suddenly decreased to 82 cm (-1) for the clusters of n = 7-12. The cluster distribution indicates that the n = 6 cluster is most populated in the molecular beam. These experimental findings with the aid of ab initio calculation indicate that the first six Ar solvent molecules are attached to top and bottom of Cr(Bz) 2 to give the robust structure for the Cr(Bz) 2-Ar 6 cluster whereas the next six Ar molecules are gathered on the side of the solute core to give the highly symmetric structure of the Cr(Bz) 2-Ar 12 cluster.  相似文献   

13.
Iron-pyrene cluster anions, [Fe(m)(pyrene)(n)](-) (m = 1-2, n = 1-2) were studied in the gas phase by photoelectron spectroscopy, resulting in the determination of their electron affinity and vertical detachment energy values. Density functional theory calculations were also conducted, providing the structures and spin multiplicities of the neutral clusters and their anions as well as their respective electron affinity and vertical detachment energy values. The calculated magnetic moments of neutral Fe(1)(pyrene)(1) and Fe(2)(pyrene)(1) clusters suggest that a single pyrene molecule could be a suitable template on which to deposit small iron clusters, and that these in turn might form the basis of an iron cluster-based magnetic material. A comparison of the structures and corresponding photoelectron spectra for the iron-benzene, iron-pyrene, and iron-coronene cluster systems revealed that pyrene behaves more similarly to coronene than to benzene.  相似文献   

14.
The stability and structures of titanium-doped gold clusters Au(n)Ti (n=2-16) are studied by the relativistic all-electron density-functional calculations. The most stable structures for Au(n)Ti clusters with n=2-7 are found to be planar. A structural transition of Au(n)Ti clusters from two-dimensional to three-dimensional geometry occurs at n=8, while the Au(n)Ti (n=12-16) prefer a gold cage structure with Ti atom locating at the center. Binding energy and second-order energy differences indicate that the Au(14)Ti has a significantly higher stability than its neighbors. A high ionization potential, low electron affinity, and large energy gap being the typical characters of a magic cluster are found for the Au(14)Ti. For cluster-cluster interaction between magic transition-metal-doped gold clusters, calculations were performed for cluster dimers, in which the clusters have an icosahedral or nonicosahedral structure. It is concluded that both electronic shell effect and relative orientation of clusters are responsible for the cluster-cluster interaction.  相似文献   

15.
The intermolecular methane-methane and benzene (Bz)-methane interactions formulated in this paper are suitable to investigate systems of increasing complexity. The proposed CH(4)-CH(4) and Bz-CH(4) potential energy functions are indeed applied to study some macroscopic properties of methane and important features of both small Bz-(CH(4))(n) (n > 1-10) clusters and Bz surrounded by several CH(4) molecules. Relevant parameters of the interaction, derived from molecular polarizability components, have been proved to be useful to describe in a consistent way both size repulsion and dispersion attraction forces. The proposed potential model also allows one to isolate the role of the different intermolecular energy contributions. The spatial distribution of the CH(4) molecules in the clusters is investigated by means of molecular dynamics simulations under various conditions, even when methane phase transition from liquid to gas is likely to occur. In addition, several properties, such as radial distribution functions, density values, and mean diffusion coefficients, are analyzed in detail.  相似文献   

16.
The CH/π interaction energies in benzene-alkane model clusters were precisely determined by laser spectroscopy and theoretical calculations. Two-color resonant two-photon ionization spectroscopy was employed to experimentally determine the interaction energies with isomer selectivity. High precision ab initio calculations were also performed to evaluate the CCSD(T) level interaction energies of various isomers at the basis set limit. Binary clusters of benzene with ethane, propane, n-butane, iso-butane, and cyclohexane were studied. The experimental interaction energies were well reproduced by the theoretical evaluations. The magnitude of the interaction energy clearly correlates with the average polarizability of the alkane moiety, demonstrating that the CH/π interaction energy is dominated by the dispersion interaction. On the other hand, the number of C-H groups in contact with the phenyl ring has no relation to the magnitude of the interaction energy, and it indicates that the role of the hydrogen atom in the CH/π interaction is essentially different from that in hydrogen bonds.  相似文献   

17.
The benzene‐benzene (Bz‐Bz) interaction is present in several chemical systems and it is known to be crucial in understanding the specificity of important biological phenomena. In this work, we propose a novel Bz‐Bz analytical potential energy surface which is fine‐tuned on accurate ab initio calculations in order to improve its reliability. Once the Bz‐Bz interaction is modeled, an analytical function for the energy of the clusters may be obtained by summing up over all pair potentials. We apply an evolutionary algorithm (EA) to discover the lowest‐energy structures of clusters (for ), and the results are compared with previous global optimization studies where different potential functions were employed. Besides the global minimum, the EA also gives the structures of other low‐lying isomers ranked by the corresponding energy. Additional ab initio calculations are carried out for the low‐lying isomers of and clusters, and the global minimum is confirmed as the most stable structure for both sizes. Finally, a detailed analysis of the low‐energy isomers of the n = 13 and 19 magic‐number clusters is performed. The two lowest‐energy isomers show S6 and C3 symmetry, respectively, which is compatible with the experimental results available in the literature. The structures reported here are all non‐symmetric, showing two central Bz molecules surrounded by 12 nearest‐neighbor monomers in the case of the five lowest‐energy structures. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Theoretical studies on the Ge n Si m clusters have been carried out using advanced ab initio approaches. The lowest energy isomers were determined for the clusters with compositions n+m=2-5. All possible isomers arising due to permutations of Ge and Si atoms were investigated. The L-shaped structure for the trimers, tetragonal with diagonal bond for tetramers, and a trigonal bipyramid for pentamers represent the energy optimized ground state geometries. The bonding analyses revealed that the trimers and tetramers are stabilized through multicenter pi bonding. In pentamers, this stabilizing factor is eliminated due to the further cluster growth. The ionization of clusters does not change their geometrical characteristics. The agreement of the calculated ionization and atomization energies with those obtained from the mass spectrometric studies (through estimated appearance potential) validated the reported structures of the clusters. The bonding properties of these species are discussed using their molecular orbital characteristics and analysis of natural bond orbital population data.  相似文献   

19.
The structural, electronic, and magnetic properties of cobalt-benzene complexes (Co(n)Bz(m), n, m = 1-4, m = n, n + 1) have been explored within the framework of an all electron gradient-corrected density functional theory. Sandwich conformations are energetically preferred for the smallest series of n, m = 1-2, rice-ball structures are for larger sizes with n > or = 3, and both motifs coexist for Co(2)Bz(3). The rice-ball clusters of (3, 3) and (4, 4) are more stable than (3, 4) having a relative large binding energy and HOMO-LUMO gap whereas smaller sandwich clusters have highly kinetic stability at (n, n + 1). The computed ionization potentials and magnetic moments of Co(n)Bz(m) are in good agreement with the measured values overall; the present results suggest that the measured moments are averages reflecting mixtures of a few nearly isoenergetic isomers having different spin states. The magnetism of the complexes mainly comes from Co atoms with a Bz molecule only possessing very small moments. Ferromagnetic ordering is energetically preferred for smaller complexes with n = 1-3 whereas antiferromagnetic ordering is favored for (4, 4). The relatively smaller moments of Con clusters in a Bz matrix indicate that Bz molecules play an attenuation role to the magnetism of the complexes.  相似文献   

20.
Density functional calculations within the generalized gradient approximation have been used to investigate the lowest energy electronic and geometric structures of neutral, cationic, and anionic Pd(n) (n=1-7) clusters in the gas phase. In this study, we have examined three different spin multiplicities (M=1, 3, and 5) for different possible structural isomers of each neutral cluster. The calculated lowest energy structures of the neutral clusters are found to have multiplicities, M=1 for Pd(1), Pd(3), Pd(5), Pd(6), and Pd(7), while M=3 for Pd(2) and Pd(4). We have also determined the lowest energy states of cationic and anionic Pd(n) (n=1-7) clusters, formed from the most stable neutral clusters, in three spin multiplicities (M=2, 4, and 6). Bond length, coordination number, binding energy, fragmentation energy, bond dissociation energy, ionization potential, electron affinity, chemical hardness, and electric dipole moment of the optimized clusters are compared with experimental and other theoretical results available in the literature. Based on these criteria, we predict the four-atom palladium cluster to be a magic-number cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号