首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
To improve its solubility, dissolution, and bioavailability; Ibuprofen-polyethylene glycol 8000 (PEG 8000) solid dispersions (SDs) with different drug loadings were prepared, characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), and evaluated for solubility, in-vitro release, and oral bioavailability of ibuprofen in rats. Loss of individual surface properties during melting and solidification as revealed by SEM micrographs indicated the formation of effective SDs. Absence or shifting towards the lower melting temperature of the drug peak in SDs and physical mixtures in DSC study indicated the possibilities of drug-polymer interactions. Quicker release of ibuprofen from SDs in rat intestine resulted in a significant increase in AUC and C(max), and a significant decrease in T(max) over pure ibuprofen. Preliminary results of this study suggested that the preparation of ibuprofen SDs using PEG 8000 as a meltable hydrophilic polymer carrier could be a promising approach to improve solubility, dissolution and bioavailability of ibuprofen.  相似文献   

2.
Solid dispersions (SDs) of ibuprofen (IBU) were prepared with four carriers: Kollidon 25, Kollidon 30, Kollidon VA64, and Kollidon CL, using a newly developed pulse combustion dryer system, HYPULCON. Physicochemical properties of the SDs obtained were investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), scanning electron microscope (SEM), and Fourier transformation IR spectroscopy (FT-IR). Powder X-ray diffraction (PXRD) showed that the crystal diffraction peaks of IBU in SDs disappeared completely, and in differential scanning calorimetry (DSC) curves, the endothermic peaks of IBU in SDs were not observed. Fourier transformation IR spectroscopy (FT-IR) proved that interactions between the drug and carrier existed. These findings demonstrated that IBU changed to an amorphous form in the SDs with the four carriers using the pulse combustion dryer system. The dissolution property of IBU in the SDs was markedly enhanced. The dissolution test showed that after 5 min of dissolution, the concentrations of IBU in the SDs with Kollidon CL as the carrier was 43.81 mug/ml, corresponding to 13.0 times that of pure IBU. So, it is demonstrated that the pulse combustion dryer system is very useful for preparing SDs of IBU with Kollidon of different grades as carriers.  相似文献   

3.
DA-5018 is a new capsaicin derivative and has analgesic effect. The objective of this work was to investigate the existence of polymorphs and pseudopolymorphs of DA-5018 and the transformation of crystal forms. Eight crystal forms of DA-5018 have been isolated by recrystallization and characterized by powder X-ray diffractometry (PXRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). The PXRD and DSC patterns of the eight crystal forms were different respectively. In the dissolution studies in simulated intestinal fluid at 37±0.5°C, the solubility of Form 2 was the highest. And the solubility in water decreased in rank order: Form 2>Form 3>Form 1>Form 5>Form 7>Form 4>Form 6>Form 8. Eight crystal forms were shown to have a good physical stability at room temperature for 60 days.  相似文献   

4.
The aim of this study was to investigate the effect of hydroxypropyl-??-cyclodextrin (HP??CD) on the solubility and dissolution rate of Cefdinir (CEF). The methods that were employed to prepare CEF?CHP??CD complexes were Kneading (KN), Co-evaporation (CE), Spray drying (SD) and a novel approach of Microwave irradiation (MWI). The formation of inclusion complexes with HP??CD in the solid state, were characterized by Differential Scanning Calorimetry (DSC), Fourier Transformation Infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance Spectroscopy (NMR), X Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) studies, and comparative studies on the in vitro dissolution of CEF were carried out. Phase solubility profile with HP??CD was classified as AL type, indicating the formation of 1:1 stoichiometric inclusion complexes. Characterization of binary systems by DSC, FTIR, NMR, XRD and SEM indicated that SD and MWI method resulted in formation of true complexes. Binary systems showed significant increase in dissolution rate as compared to plain drug. Amongst the various binary systems, MWI products were prepared in least time with better yield and highest dissolution rate.  相似文献   

5.
The inclusion behaviour of β-cyclodextrin (βCD) was studied toward Cefdinir (CEF) in order to enhance the solubility and dissolution rate, following cyclodextrin complexation. Drug cyclodextrin solid systems were prepared by conventional methods of kneading (KN), co-evaporation (CE), spray drying (SD) and with a novel approach of microwave irradiation (MWI). The formation of inclusion complexes with βCD in the solid state, were confirmed by Differential scanning calorimetry (DSC), Fourier Transform Infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) studies, and comparative studies on the in vitro dissolution of CEF were carried out. Characterization of binary system by DSC, FTIR and SEM indicated that SD and MWI method resulted in formation of true complexes. Binary systems showed significant increase in dissolution rate as compared to plain drug. Amongst the binary systems MWI products were prepared in least time with better yield and highest dissolution rate.  相似文献   

6.
The objective of the present study was to formulate inclusion complex of saquinavir mesylate to improve the aqueous solubility and dissolution rate. Saquinavir mesylate is a BCS class II drug having low aqueous solubility and therefore low oral bioavailability. In the present study, inclusion complex of saquinavir mesylate with hydroxypropyl-β-cyclodextrin were prepared by kneading method. Inclusion complex were characterized by differential scanning calorimetry (DSC), X-ray diffractometry (XRD), 1H NMR studies, and Fourier transform infrared spectroscopy and evaluated for in vitro dissolution, and phase solubility studies. DSC and XRD study demonstrated that there was a significant decrease in crystallinity of pure drug present in inclusion complex, which resulted in an increased dissolution rate of saquinavir mesylate and 1H NMR studies strongly, confirmed that the inclusion complex has formed. Inclusion complexation results in improvement in solubility and dissolution rate. The inclusion complexation would be suitable method for dissolution and bioavailability enhancement of saquinavir mesylate.  相似文献   

7.
The purpose of this study was to investigate the effects of alkalizers in dissolution rate and crystal structure of valsartan (VAL) in Poloxamer 407 (POX)-based solid dispersions (SD). VAL, a poorly-water soluble drug was selected as a model drug because of its low solubility at low pH. The POX-based SDs containing alkalizers (Na?CO?, MgO, meglumine and arginine) were prepared by melting method. The dissolution tests were performed using the United States Pharmacopeia (USP) paddle II method in enzyme-free simulated gastric fluid (pH 1.2) for 2 h. Microenvironmental pH (pH(M)) was examined potentiometrically by using a surface pH electrode. Dissolution rate of SD incorporating Na?CO? was drastically increased. The differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) data indicated that crystalline structure of VAL in SD was transformed to amorphous form by the addition of alkalizers but could not explain the differences in the dissolution rates. The molecular interaction between VAL and Na?CO? was observed in the Fourier transform infrared spectroscopy (FT-IR) spectra by the shift of C=O band from 1732 to 1719 cm?1 and the disappearance of carbonyl group at 1598 cm?1. Furthermore, Na?CO? efficiently modulated pH(M) by providing a favorable microenvironment for drug dissolution. A combination of SD method and use of alkalizer is a promising approach to modulate release rate of poorly water-soluble and ionizable drug with an aid of changes of drug crystallinity, molecular interaction and pH(M).  相似文献   

8.
The influence of microwave technology on the in vitro dissolution rate and in vivo antihyperglycemic activity of a poorly water soluble drug, repaglinide (RG) was studied. Solid dispersions were prepared by conventional fusion method and microwave method using poloxamer 188. The dispersions were characterized by solubility study, dissolution study, Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Microwave generated solid dispersions exhibited remarkable improvement in solubility and dissolution rate compared to that of pure RG. Results of DSC, XRD and SEM study showed conversion of crystalline form of RG to amorphous form. In vivo studies revealed that the microwave generated solid dispersion showed significant improvements in antihyperglycemic activity as compared to RG alone, thus confirming the advantage of improved pharmacological activity of RG by microwave method. In conclusion, microwave method could be considered as simple, efficient and solvent free promising alternative method to prepare solid dispersion of poorly water soluble drug RG with significant enhancement in solubility, dissolution rate and antihyperglycemic activity.  相似文献   

9.
Delivery of poorly soluble drugs results in poor absorption and low bioavailability to the systemic circulation. Chrysophanol (1,8-dihydroxy 3-methyl anthraquinone) a plant derived herbal drug is well known for its strong anti-inflammatory, anti-mutagenic, and anti-carcinogenic activities but poor aqueous solubility (hence the lower dissolution rate), is a major barrier in its intestinal absorption. To improve the bioavailability and prolong its duration in the body system, its phospholipid complex was prepared and evaluated for various physicochemical parameters like encapsulation efficiency, scanning electron microscopy, differential scanning calorimetry (DSC), X-ray powder diffractometry (X-RPD), IR spectroscopy, aqueous/n-octanol solubility, and dissolution study. The phospholipid complex of chrysophanol was found, fluffy and porous with rough surface morphology. FTIR, DSC, and X-RPD data confirmed the complex formation. The 89.1 % of chrysophanol was encapsulated in the phospholipid complex. The aqueous solubility of chrysophanol was improved from 0.60 to 30.09 μg ml?1 in the prepared complex. The improved dissolution was shown by the complex (which showed continuous release up to 83.67 % of chrysophanol) at the end of 12 h, in comparison to free drug (which showed a total of only 45.12 % drug release at the end of 12 h of dissolution study).  相似文献   

10.
Nanosponges are betacyclodextrins crosslinked with carbonate bonds. The polymer formed is nanoparticulate in nature. Itraconazole is a BCS Class II drug that has a dissolution rate limited poor bioavailability. Rationale of the work was to enhance the solubility of Itraconazole so that the bioavailability problems are solved. Solid dispersion technique has been used for drug incorporation. The effect of a ternary component copolyvidonum on solubility of itraconazole has been studied. Phase solubility studies has been carried out with a rationale of comparing the solubilization efficiency of nanosponges, copolyvidonum and combination. The dispersions were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and photon correlation spectroscopy (PCS). It was found that the solubility of itraconazole was enhanced more than 50-folds with a ternary solid dispersion system. Using copolyvidonum in conjunction with nanosponges helps to increase the solubilization efficiency of nanosponges as evident from the phase solubility studies.  相似文献   

11.
The present investigation studied a novel extended release system of promethazine hydrochloride (PHC) with acrylic polymers Eudragit RLPO and Eudragit RS100 in different weight ratios (1 : 1 and 1 : 5) using coevaporation and coprecipitation techniques. Solid dispersions were characterized by Fourier-transformed infrared spectroscopy (FT-IR), Differential scanning calorimetry (DSC), Powder X-ray diffractometry (PXRD), Nuclear magnetic resonance (NMR), Scanning electron microscopy (SEM) as well as solubility and in vitro dissolution studies in 0.1 n HCl (pH 1.2), double distilled water and phosphate buffer (pH 7.4). Adsorption test from drug solution to solid polymers were also performed. Selected solid dispersion system was subjected to direct compression and compressed tablets were evaluated for in vitro dissolution studies. The progressive disappearance of drug peaks in thermotropic profiles of coevaporates were related to increasing amount of polymers while SEM studies suggested homogenous dispersion of drug in polymer. Eudragit RLPO had a greater adsorptive capacity than Eudragit RS100 and thus its coevaporates in 1 : 5 ratio exhibited higher dissolution rate with 91.90% drug release for 12 h. Among different formulations, tablets prepared by Eudragit RLPO coevaporates (1 : 5) displayed extended release of drug for 12 h with 90.87% release followed by zero order kinetics (r(2)=0.9808).  相似文献   

12.
Cyclodextrins are cyclic oligosaccharides, capable of forming inclusion complexes with many active substances. This way, the aqueous solubility and rate of dissolution of active substances can be changed. For this research we have selected celecoxib as the model active substance, due to its low water solubility, high lipophilicity, and high intestinal permeability. Usually, the amount of cyclodextrin complex that can be incorporated into a pharmaceutical dosage form is limited. The usage of hydrophilic polymers can overcome this problem. In this study, we wanted to point out the potential of various types of hydrophilic polymers for enhancing the complex formation efficiencies, and to highlight the possible use of alginate as a solubility stabilizer/enhancer and as a microsphere matrix polymer. The phase solubility investigation showed greater stability constants (> 250 M?1) in ternary complexes than in the binary complex, which is a good indicator of the complex formation enhancer properties of these hydrophilic polymers. The relative solubilizing efficiency decreased in the next order: PVP K25 (6.49) > Sodium alginate (6.26) > PEG 6000 (5.72) > without polymer (4.81). The DSC curves showed that all samples that were prepared with β-cyclodextrin (both complexes and physical mixtures) had lower melting endotherms at 160 °C than pure celecoxib. XRD confirmed the complex formation by partial celecoxib amorphisation. The dissolution studies of the prepared microspheres revealed that all samples had different release rates (shown by the similarity factor f2, which was 36.37, 42.46 and 38.11 % respectively) and that the use of β-cyclodextrin increased the dissolution rate of celecoxib from alginate microspheres in a controlled manner. We concluded that sodium alginate could act as a complex stabilizing/enhancing agent and as a microsphere matrix polymer, at the same time.  相似文献   

13.
Naringenin, a flavonoid specific to citrus fruits shows a variety of therapeutic effects like anti-inflammatory, anticarcinogenic, and antitumour effects. But it is associated with some limitations like poor water solubility, poor dissolution, lower half-life, and rapid clearance from the body. With the aim of improving amorphous nature, water solubility, and dissolution profile of naringenin and its complexes were prepared with β-cyclodextrin in three different molar ratios (1:1, 1:2, and 1:3) by solvent evaporation method. These complexes were characterized for solubility, drug content, chemical interaction (using FTIR), phase transition behavior (using DSC), crystallinity (using XRPD), surface morphology (using SEM), and in vitro dissolution study. The results were also critically compared with the results obtained from naringenin-phospholipid complexes (from author’s previous study). The prepared complexes showed high drug content (ranging from 69.53 to 84.38 %) and about two fold improvement in water solubility (from 41.81 to 76.31 μg mL?1 in the complex with 1:3 ratio). SEM of the complexes showed irregular and rough surface morphology. FTIR, DSC, and XRPD data confirmed the formation of the complex. Unlike the free naringenin which showed a total of only 48.78 % drug release at the end of 60 min, the complex showed 98.0–100 % in dissolution study. Thus it was concluded that the β-cyclodextrin of naringenin may be of potential use for improving bioavailability of poorly soluble phytoconstituents/herbal drugs. On critical comparison with the phospholipid complex of naringenin both the techniques were found almost equally effective in improving the solubility and the dissolution performance of naringenin in the complex form.  相似文献   

14.
The objective of present work was to enhance the solubility and bioavailability of poorly aqueous soluble drug Irbesartan (IBS). The solid dispersions were prepared by spray drying method using low viscosity grade HPMC E5LV. Prepared solid dispersions were characterized by dissolution study, fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray diffraction studies (XRD). Results of the SEM, DSC and XRD study showed the conversion of crystalline form of IBS to amorphous form. The dissolution rate was remarkably increased in case of solid dispersion compared to pure IBS. Solubility and stability of solid dispersion was increased due to surfactant and wetting property, slowing devitrification and having anti-plasticization effect of HPMC E5LV. In vivo studies were performed in healthy rabbits (New Zealand grey) and compared with plain IBS. Solid dispersions showed increase in relative bioavailability than the plain IBS suspension. In conclusion, the prepared solid dispersions showed remarkable increase in solubility, dissolution rate and hence bioavailability of poorly water soluble drug Irbesartan.  相似文献   

15.
Lamotrigine (LMN) is an antiepileptic drug, with poor aqueous solubility, which might lead to erratic bioavailability. The objective of the present work was to improve the dissolution characteristics of the LMN using Hydroxy propyl β-cyclodextrin (HP β-CD), which might offer reliable bioavailability. The phase solubility profile was classified as A L -type, revealing 1:1 stoichiometric complexation, with a stability constant (Ks) of 573 M?1. Binary systems of LMN and HP β-CD were prepared in different molar ratios (1:1, 1:2, 1:3 and 1:4) by kneading method. The binary systems were characterized by Fourier Transform Infrared (FT-IR) Spectroscopy, Differential Scanning Calorimetry (DSC) and Powder X-ray Diffraction Analysis (PXRD). Results revealed that in the kneaded products the entire drug was entrapped inside the HP β-CD cavity and reduction in drug crystallinity also took place, which may be responsible for improved dissolution characteristics as compared to that of the pure drug as depicted from the dissolution studies.  相似文献   

16.
The formation of inclusion complexes with para-sulfonated calix[n]arene (PSC[n]A) was studied for carbamazepine (CBMZ), a poorly water soluble anticonvulsant drug. The effect of PSC[4]A and PSC[6]A on aqueous solubility of carbamazepine was studied extensively. The complete complexation of the drug was achieved after 48 h of shaking with PSC[n]A in water and evaporation of water to get solid complex. The interaction between PSC[n]A and CBMZ in solid state inclusion complexes was accomplished by aqueous phase solubility studies, HPLC, DSC, PXRD, FTIR, UV–Vis, and FT-Raman spectroscopy. The solubility of CBMZ increases as a function of PSC[n]A concentration. The results of the two phase solubility experiments are in good conformity to signify the formation of 1:1 (PSC[6]A:CBMZ) and 2:1 PSC[4]A:CBMZ complexes. The order of dissolution rate of CBMZ is inclusion complex > physical mixture > drug alone. The purpose of this study was to enhance solubility resulting in high dissolution rate and bioavailability of this essentially water insoluble drug.  相似文献   

17.
Drug solubility plays a significant role in the development of drug formulation. The objectives of this work are to improve the solubility and dissolution rate of vortioxetine (VT) by preparing its inclusion complexes (ICs) with β-Cyclodextrin (β-CD) and γ-Cyclodextrin (γ-CD). The ICs were prepared in 1:1 M ratio via recrystallization method and characterized by P-XRD, FT-IR, 1H NMR, 2D NOESY, and DSC. Further, the crystal structure of VT-β-CD was analyzed by SC-XRD. P-XRD data obtained for ICs describe the crystalline pattern. The DSC analysis shows change in the thermal behavior of VT, CDs and ICs. FT-IR analysis shows shifting of frequencies in ICs when compared with the pristine VT drug and CDs. The 2D NOESY in DMSO-d6 indicates weak interaction between the VT and CD molecules. The crystal structure of VT-β-CD consists of one guest VT, one host CD, and nine water molecules in the crystal lattice. The solubility of ICs was significantly improved in distilled water, pH 1.2 acidic, and phosphate buffer pH 6.8 medium, as compared with the solubility of the pristine VT drug. The in vitro dissolution rate of ICs in different dissolution media was investigated, which was higher than that of the commercial product of VT.  相似文献   

18.
Developing the drugs as amphiphilic lipid complexes is a potential approach for improving therapeutic efficacy of the drugs by increasing solubility, reducing drug crystallinity, modifying dissolution behavior (sustained or controlled release), and improving bioavailability. Emodin (1,3,8-trihydroxy-6-methylanthraquinone), an anthranoid derivative, shows several biological effects like antimicrobial, antidiuretic, anti-cancerous, and potent antioxidant but due to poor solubility, the dissolution restrains its valuable importance. To overcome this limitation, the emodin–phospholipid complex was developed and investigated by thermal analysis (differential scanning calorimetry), crystallographic (X-ray diffractography), surface morphology (scanning electron microscopy), spectroscopic methods (FT-IR, 1H-NMR), solubility, and the dissolution (in vitro drug release) study. The phospholipid complex of emodin was found, fluffy and porous with rough surface morphology in the SEM. FT-IR, 1H-NMR, DSC, and X-RPD data confirmed the formation of the complex. The water and n-octanol solubility of emodin was improved from 2.25 to 9.97 and 53.45 to 77.62 μg/ml, respectively, in the prepared complex. The improved dissolution was shown by the phospholipid complex. Based on the results of the study, it can be concluded that the phospholipid complex may be considered as promising drug delivery system for improving the overall absorption and bioavailability of the emodin molecule.  相似文献   

19.
The amorphous form of carvedilol phosphate (CVD) was obtained as a result of grinding. The identity of the obtained amorphous form was confirmed by powder X-ray diffraction (PXRD), different scanning calorimetry (DSC), and FT-IR spectroscopy. The process was optimized in order to obtain the appropriate efficiency and time. The crystalline form of CVD was used as the reference standard. Solid dispersions of crystalline and amorphous CVD forms with hydrophilic polymers (hydroxypropyl-β-cyclodextrin, Pluronic® F-127, and Soluplus®) were obtained. Their solubility at pH 1.2 and 6.8 was carried out, as well as their permeation through a model system of biological membranes suitable for the gastrointestinal tract (PAMPA-GIT) was established. The influence of selected polymers on CVD properties was defined for the amorphous form regarding the crystalline form of CVD. As a result of grinding (four milling cycles lasting 15 min with 5 min breaks), amorphous CVD was obtained. Its presence was confirmed by the “halo effect” on the diffraction patterns, the disappearance of the peak at 160.5 °C in the thermograms, and the changes in position/disappearance of many characteristic bands on the FT-IR spectra. As a result of changes in the CVD structure, its lower solubility at pH 1.2 and pH 6.8 was noted. While the amorphous dispersions of CVD, especially with Pluronic® F-127, achieved better solubility than combinations of crystalline forms with excipients. Using the PAMPA-GIT model, amorphous CVD was assessed as high permeable (Papp > 1 × 10−6 cm/s), similarly with its amorphous dispersions with excipients (hydroxypropyl-β-cyclodextrin, Pluronic® F-127, and Soluplus®), although in their cases, the values of apparent constants permeability were decreased.  相似文献   

20.
《中国化学快报》2023,34(2):107258
Rhein (Rhe), an anthraquinone derivative, exhibits excellent anti-inflammatory effects and other pharmacological activities, but its clinical application remains limited due to poor solubility. The present work aims at the improvement of solubility and oral bioavailability of Rhe through cocrystal formation. For this purpose, Rhe and matrine (Mat) were selected as pharmaceutical ingredient (API) and cocrystal former (CCF), respectively, and the Rhe-Mat cocrystal was synthesized and characterized by single crystal X-ray diffraction (SXRD), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC). The formation mechanism of Rhe-Mat cocrystal was elucidated by molecular surface electrostatic potential (MSEP). It is worth mentioning that the 50-fold increment of dissolution in vitro was observed in pure water in the form of Rhe-Mat cocrystal. Furthermore, the in vivo studies revealed that Rhe-Mat cocrystal indicated the faster absorption rate and the higher peak blood concentration than the pure Rhe. Hence, it can be concluded that current study successfully improved the solubility and oral bioavailability of Rhe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号