首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper investigates the suitability of an ultra-high-performance liquid chromatography/high-performance liquid chromatography hybrid system for ultra-high-performance liquid chromatography applications. Thus, the effect of extra column band broadening, the gradient system, and the injection system were tested and optimized according to their capabilities. An increase of the theoretical plate number up to a factor of two is achieved by the optimization of the extra column volume into the typical ultra-high-performance liquid chromatography range (<10 μl). Moreover, for qualitative purposes injections of volumes typical for ultra-high-performance liquid chromatography methods are precise. Despite this, a lack of precision and accuracy was determined for the gradient system, and the dwell volume meets the typical specification range for conventional HPLC systems. Therefore, hybrid systems are the intercept between both spectra and are limitedly suitable for ultra-high-performance liquid chromatography applications. Another way to approximate ultra-high-performance liquid chromatography performance using a high-performance liquid chromatography system is superficially porous particles. Thus, H/u curves of 5 μm superficially porous and 3 μm fully porous particles were recorded in order to determine the effect of the particle technology resulting in comparable performance of the used stationary phases.  相似文献   

2.
Montelukast sodium (MLS) is a leukotriene receptor antagonist drug used in the treatment of asthma, bronchospasm, allergic rhinitis and urticaria. A reversed-phase high performance liquid chromatography method was developed to separate, identify and quantitative determination of MLS and its eight known organic impurities in tablet dosage form using a C18 column and mobile phases consisting of a gradient mixture of pH 2.5 phosphate buffer and acetonitrile. The stability-indicating character of the developed method was proven using stress testing (1 m HCl at 80°C/30 min, 1 m NaOH at 80°C/30 min, H2O at 80°C/30 min, 3% H2O2 at 25°C/1 min, dry heat at 105°C/10 h and UV–vis light/4 days) and was validated for specificity, quantitation limit, linearity, precision, accuracy and robustness. For MLS and its eight known impurities, the quantitation limits, linearity and recoveries were 0.015–0.03 μg/ml, correlation coefficient > 0.997 (R2 > 0.995) and 85.5–107.0%, respectively. The developed chromatographic method is suitable for impurity profiling and also for assay determination of MLS in bulk drugs and pharmaceutical formulations. The mass values (m/z) of newly formed degradation products (DP1 and DP2) of montelukast sodium were identified using liquid chromatography–mass spectrometry.  相似文献   

3.
A combination of antiretroviral agents is frequently used in effective treatment of the human immunodeficiency virus infection. In this study, two different separation methods are presented for the simultaneous determination of emtricitabine, rilpivirine and tenofovir from raw materials and urine samples. Developed liquid chromatography and capillary electrophoresis methods were thoroughly optimized for high analytical performances. Optimization of multiple variables at the same time by performing a minimum number of experiments was achieved by the Box–Behnken design, which is an experimental design in response surface methodology, in capillary electrophoresis. The results of the experimental design ensure minimum analysis time with well‐separated analytes. Separation conditions, such as different stationary phases, pH level, organic modifiers and temperatures in liquid chromatography method, were also optimized. In particular, among stationary phases, the core–shell column especially enhanced the effectiveness of separation in liquid chromatography. Both methods were fully validated and applied to real samples. The main advantage of the developed methods is the separation of the drug combination in a short time with high efficiency and without any time‐consuming steps.  相似文献   

4.
The analysis of impurities and degradation products in pharmaceutical preparations are usually performed by chromatographic techniques such as high-performance liquid chromatography (HPLC). This approach demands extensive analysis time, mostly due to extraction and separation phases. These steps must be carried out in samples in order to adapt them to the requirements of the analytical method of choice. In the present contribution, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was employed to quantify an important degradation product in atorvastatin calcium 80 mg tablets: the atorvastatin lactone. Through the standard of the impurity, it was possible to perform quantitative analysis directly on the drug tablet, using a quick and novel approach, suitable for quality control processes in the pharmaceutical industry.  相似文献   

5.
Thermal stability of para (p--) and ortho (o-) isomers was investigated by CRTG and reaction kinetic analysis. The temperature started the mass decrease of o-isomer was about 20°C lower than that of p-isomer by CRTG. The activation energies of thermal decomposition of o- and p-isomers were 136.9 and 153.4 kJ mol–1, respectively. The effect of steric hindrance on heat of formation was calculated by AM1 method using Win MOPAC3.0 for the model compound of p- and o-isomers. The lower stability of o-isomer was the results of the steric hindrance between the ethylene unit of aromatic ring and three alkyl chains.  相似文献   

6.
Macitentan (MAC) is a pulmonary arterial hypertension (PAH) drug marketed as a tablet and often has stability issues in the final dosage form. Quantitative determination of MAC and its associated impurities in tablet dosage form has not been previously reported. This study quantified impurities present in Macitentan tablets using a binary solvent-based gradient elution method using reversed phase-high performance liquid chromatography. The developed method was validated per International Conference on Harmonization (ICH) guidelines and the drug product was subjected to forced degradation studies to evaluate stability. The developed method efficiently separated the drug and impurities (48 min) without interference from solvents, excipients, or other impurities. The developed method met all guidelines in all characteristics with recoveries ranging from 85%-115%, linearity with r2 ≥ 0.9966, and substantial robustness. The stability-indicating nature of the method was evaluated using stressed conditions (hydrolysis:1 N HCl at 80℃/15 min; 1 N NaOH at 25℃/45 min; humidity stress (90% relative humidity) at 25℃ for 24 h, oxidation:at 6% (v/v) H2O2, 80℃/15 min, thermolysis:at 105℃/16 h and photolysis:UV light at 200 Wh/m2; Fluorescent light at 1.2 million luxh). Forced degradation experiments showed that the developed method was effective for impurity profiling. All stressed samples were assayed and mass balance was>96%. Forced degradation results indicated that MAC tablets were sensitive to hydrolysis (acid and alkali) and thermal conditions. The developed method is suitable for both assay and impurity determination, which is applicable to the pharmaceutical industry.  相似文献   

7.
A convergent, general synthetic route to 17-membered macrocycles was developed to support biological evaluation and structure–activity relationship (SAR) studies during phenotypic screening for immunology targets. A series of amide coupling reactions led to a ring-closing metathesis (RCM) precursor that was cyclized using Grubbs' catalysts. It was found that the reaction formed the macrocyclic products in a 3:1 ratio of E/Z isomers. Moreover, it was shown that a number of similarly substituted RCM precursors undergo cyclization to produce the geometric E/Z isomers in roughly the same 3:1 ratio. The remarkable independence of the E/Z outcome from the substitution pattern of the RCM precursor makes this synthetic approach generally applicable. Separation of the E/Z isomers was achieved by preparative high-performance liquid chromatography and allowed biological profiling of the geometric isomers. Reactive groups in the macrocycle were utilized for late-stage modifications in the fashion of diversity-orientated synthesis (DOS), yielding analogs for SAR studies.  相似文献   

8.
A simple reversed‐phase high‐performance liquid chromatography method for the chiral separation of the active pharmaceutical ingredient (S)‐clopidogrel has been developed on the cellulose‐based Chiralcel OJ‐RH chiral stationary phase. The S enantiomer was baseline resolved from its R impurity (impurity C) with a mobile phase consisting of methanol/water (100:15) without any interference coming from the other two potential chiral impurities A and B. The enantio‐ and chemoselective method was partially validated and compared with that reported in the United States Pharmacopoeia for the drug product. The versatility of the Chiralcel OJ‐RH allowed separating the enantiomers of the impurity B also under normal phase and setting up an efficient strategy to convert the racemic sample into the enantiomeric S form on a semipreparative scale.  相似文献   

9.
In this paper,a high-performance liquid chromatography coupled with ultraviolet detection and Fourier transform-ion cyclotron resonance mass spectrometry(HPLC-UV/FTICRMS) method was described for the investigation of impurity profile in moxifloxacin (MOX) drug substance and chemical reference substance.Ten impurities were detected by HPLC-UV,while eight impurities were identified by using the high accurate molecular mass combined with multiple-stage mass spectrometric data and fragmentation rules.In addition,to our knowledge,five impurities were founded for the first time in MOX drug substance.  相似文献   

10.
The 1Í NMR method in combination with molecular simulation was used to study conformations of Z- and E-isomers of (1R,4R)-cis-2-(4-methoxyphenyl)benzylidene-p-menthan-3-one. In solutions the Z-isomer, unlike the conformationally uniform Å-isomer, is an equilibrium mixture of chair conformers with the substantial predomination of one form with the axially oriented methyl and equatorial isopropyl groups (75—78%). The enone group is more nonplanar in the Z-isomer than in the Å-isomer. For the isopropyl fragment, the equiprobable existence of trans- and two gauche-rotamers for the Z-isomer and a substantial predomination of gauche-forms in the case of the E-isomer were established.  相似文献   

11.
A sensitive and selective liquid chromatography/tandem mass spectrometric method was developed for simultaneous determination of E‐ and Z‐guggulsterone isomers (antihyperlipidemic drug) in rabbit plasma. Both the isomers were resolved on a Symmetry‐Shield C18 (5 µm, 4.6 × 150 mm) column, using gradient elution comprising a mobile phase of methanol, 0.5% v/v formic acid and acetonitrile. With dexamethasone as internal standard, plasma samples were extracted by an automated solid‐phase extraction method using C18 cartridges. Detection was performed by electrospray ionization in multiple reaction monitoring (MRM) in positive mode. The calibration curve was linear over the concentration range of 1.56–200 ng/mL (r2 ≥ 0.998) for both analytes. The intra‐day and inter‐day accuracy and precision were within −0.96 to 4.12 (%bias) and 2.73 to 8.00 (%RSD) respectively. The analytes were stable after three freeze–thaw cycles. The method was successfully applied to study steriospecific pharmacokinetics of E‐ and Z‐guggulsterone in NZ rabbit. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
New high-performance liquid chromatography method was developed for the determination of prasugrel HCl-related substances. Impurity profile of prasugrel HCl was established by studying the degradation profile of it as an active pharmaceutical ingredient, for the first time, in the tablet form. Two significant unknown degradation products (impurities) were detected and characterized, to the best of our knowledge; these impurities have not been previously reported in the literature. The first one resulted from acidic, basic, and neutral hydrolyses of prasugrel; it was nominated as impurity 1 (5-(2-cyclopropyl-1-(2-fluorophenyl)-2-oxoethyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridin-2(3H)-one), its structure was proposed using liquid chromatography/mass spectrometry technique. The second degradant was nominated as impurity 2 (5-(2-cyclopropyl-1-(2-fluorophenyl)-2-oxoethyl)-7a-hydroxy-5,6,7,7a-tetrahydrothieno[3,2-c]pyridin-2(4H)-one) that formed upon neutral hydrolysis of prasugrel with magnesium stearate; this impurity was identified using nuclear magnetic resonance and LC-MS techniques. Based on these findings, other lubricant materials should be used in prasugrel tablets instead of magnesium stearate to avoid formation of such impurity. Prasugrel HCl was susceptible to hydrolytic and oxidative degradation, whereas it was stable under these conditions.  相似文献   

13.
A high-performance liquid chromatographic (HPLC) procedure was evaluated for the determination of a positional isomeric impurity in bulk 2-[4-(1-hydroxy-4-[4-(hydroxydiphenylmethyl)-1-piperidinyl]-butyl)-phenyl]-2-methylpropionic acid HCl drug substance. The use of a β-cyclodextrin bonded-phase column with a mobile phase of 20/80 (v/v) acetonitrile/water containing an ammonium acetate buffer at apparent pH 4.0 and a flow rate of 0.45 mL/min resulted in an excellent separation of the isomers. Ultraviolet detection was used at 220 nm. A recovery study of known spike levels (0.1 to 1.5% w/w) showed that the procedure was accurate. A two-day, two-column repeatability study showed consistent results with the test batch of the bulk compound. The level of impurity in the tested lot of the compound had a mean level of 0.32% (w/w) and a standard deviation of 0.038% (w/w, n = 5). The text was submitted by the author in English.  相似文献   

14.
15.
Serotonin receptor antagonist drug Ondansetron hydrochloride injectable formulation containing all related substances was identified and quantified by a single, simple, sensitive, eco-friendly, and green high-performance liquid chromatography method. The disseverment of all impurities was achieved with the Discovery Cyano (250 × 4.6) mm, 5 μm column. The gradient program was composed of pH 5.7 phosphate buffer as mobile phase A and acetonitrile as mobile phase B. The flow rate, column compartment temperature, and detection wavelengths were 0.9 mL/min, 30°C, and 216 nm, respectively. The method was validated as per current regulatory guidelines. The obtained %relative standard deviation for the precision results was between 0.55 and 2.72% for all impurities. The correlation coefficient values from the linearity experiment for impurities and analyte were more than 0.995. The accuracy results were obtained between 88.4 and 113.0% for all impurities. Both sample and standard solutions showed 24 h stability at benchtop and refrigerator conditions. All impurities and analytes met the specificity and mass balance for all forced degradation conditions. Quality-by-design-based design of experiments was utilized to establish the method's robustness. Method greenness was assessed by using the current advanced tool green analytical procedure index, National Environmental Methods Index, and analytical eco-scale.  相似文献   

16.
The spatial structure of (Z)-(5R)-methyl-2-(4-phenylbenzylidene)cyclohexanone prepared by photochemical isomerization of the E-isomer was studied by analyzing the magnitudes and temperature dependence of the proton spin-spin coupling constants obtained by 1H NMR spectroscopy and the results of molecular modeling using semiempirical quantum chemical AM1 and PM3 methods and the density functional theory (DFT). Comparison of the results obtained for the Z-and E-isomers shows that in both cases the conformational equilibrium for both isomers is characterized by significant preference of the chair conformer having an equatorial methyl group, namely, − ΔH (chair a ⇌ chair e) = 1.98–2.12 and 1.36–1.54 kcal mole−1 for the Z-and E-isomers, respectively. Distinctions in the non-planarity of the enone fragment and cyclohexanone ring in the Z-and E-isomers under study following from the results of mathematical modeling were confirmed by the experimental values of the geminal spin-spin coupling constants of protons of the methylene groups in α,α ′-positions with respect to the enone group. Quantum chemical calculations of the Z-isomer revealed the existence of intramolecular hydrogen bond between the carbonyl oxygen and the nearest aromatic proton in ortho-position of the benzene ring. Possible reasons for different helical twisting power of (Z)-(5R)-methyl-2-(4-phenylbenzylidene)cyclohexanone and the E-and Z-arylidene derivatives of 1R, 4R-isomenthone in the mesophase are discussed based on the results of molecular structure studies for these compounds. In the text below the unsaturated ketones under study will be called “arylidene cyclohexanone derivatives” for convenience of comparing the characteristics of methylcyclohexanone and isomenthone derivatives. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 962–972, June, 2006.  相似文献   

17.
Taxol and 10-Deacetyl baccatin III are major taxanes in the bark, needles, and endophytes of Taxus baccata. The current study aimed to develop a process for their separation from different matrices. Crude taxoid was prepared by extraction of samples with methanol, followed by partitioning with dichloromethane and precipitation with hexane. Analytical high-performance liquid chromatography involved isocratic elution on C18 column (4.6 × 250 mm, 5 μm) with methanol-water (70:30 v/v) at a flow rate of 1 ml/min. Injection volume was 20 μl and detection was carried out at 227 nm. The content of Taxol and 10-Deacetyl baccatin III in bark, needles and endophytic culture broth was 11.19 and 1.75 μg/mg; 11.19 and 1.75 μg/mg; and 2.80 and 0.22 μg/L, respectively. Preparative high-performance liquid chromatography was done on C18 column (10 × 250 mm, 5 μm) at a flow rate of 10 ml/min. About 20 g crude taxoid was processed in < 3 h with a recovery of about 90% for both the analytes. The purity of recovered Taxol and 10-Deacetyl baccatin III determined by ultra-high-performance liquid chromatography-mass spectrometry was found to be 95.78 ± 3.63% and 99.72 ± 0.18%, respectively. The structure of recovered Taxol was confirmed by nuclear magnetic resonance. The method can find use in biotransformation studies.  相似文献   

18.
The amino acid footprint of different beer samples was analyzed using ion chromatography coupled with electrospray ionization mass spectrometry. A tailor-made polymer-based cation-exchange resin was operated with a mass spectrometry-compatible eluent under isocratic conditions on a standard high-performance liquid chromatography system coupled to a single quadrupole mass spectrometer using formic acid as a volatile eluent ion source. The partially separated peaks of the isomeric pair isoleucine/leucine were processed according to their area response ratio using vertical peak splitting or Gaussian fit. Additionally, the chromatographic resolution of the isomers was optimized with an adjusted, solely aqueous mobile phase from 0.85 to 2.92. Ion suppression in the electrospray ion source was investigated for the derivatization-free method and found to be insignificant (recovery value 100 ± 15%) for 15 out of the 20 analytes. Quantitative results for various beer and mixed-beer beverages were found to be in high agreement with existing methods. Simultaneous photometric detection demonstrated the method's ability to successfully remove most of the interfering matrix compounds.  相似文献   

19.
 应用高效液相色谱方法研究了以2,6二氯苯酚和苯胺为起始原料合成药物中间体1(2,6二氯苯基)2吲哚酮(DCI)过程中,DCI及相关物质在不同色谱条件下的分离情况。结果表明,以CLCCN(150mm×6.0mmi.d.,7μm)为分离柱,以MeOHH2O(体积比为6∶4)为流动相,在流速为1mLmin的情况下,DCI及相关物质可以达到基线分离。建立了快速准确测定DCI纯度和检验杂质种类的高效液相色谱分析方法,方法准确可靠。对两个精品和两个粗品分别进行测定,结果表明精品中的杂质主要为N(2,6二氯二苯胺基)氯乙酰胺,粗品中的杂质主要为N(2,6二氯二苯胺基)氯乙酰胺和2,6二氯二苯胺。  相似文献   

20.
Short‐chain aliphatic amines are a class of hazardous impurities in drug substances. A simple method, involving derivatization followed by high‐performance liquid chromatography with diode array detection, has been developed for residue determination of eight aliphatic amines simultaneously in drug substances. Different halonitrobenzenes derivatization reagents were systematically compared. As a result, 1‐fluoro‐2‐nitro‐4‐(trifluoromethyl)benzene was selected since the derivatization effectively shifted the absorption wavelength to the visible region (400–450 nm), where most drug substances, impurities and even the derivatization reagent absorb very weakly. Due to the redshift effect, interference was minimized and adequately low limits of quantitation were reached (0.24–0.80 nmol/mL). Moreover, the derivatization reaction was readily carried out in dimethyl sulfoxide at room temperature for 1 h using N ,N‐diisopropylethylamine as catalyst to achieve the highest yield. Without any pre‐treatment, the derivatives were analyzed by high‐performance liquid chromatography with diode array detection. The high stability of the derivatives within 24 h at room temperature (RSD<1.04%) further facilitated the simultaneous preparation and consecutive analysis of quantities of samples. Finally, the proposed method was successfully applied for residue determination of eight aliphatic amines simultaneously in eight drug substance samples. This study could be helpful for the routine analysis and residue control of aliphatic amines in drug substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号