首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
用二阶微扰理论研究单重态二氟亚烷基卡宾与甲醛发生的环加成反应机理,采用MP2/6-31G*方法计算了势能面上各驻点的构型参数、振动频率和能量.结果表明,单重态二氟亚烷基卡宾与甲醛的环加成反应主要有两种反应通道,通道1中,两个反应物经a,b和c三条反应途径生成三元环构型的产物P1,其中途径c是主反应途径,该途径有两步组成:(Ⅰ)二氟亚烷基卡宾与甲醛生成了1个富能中间体(INT1c),是无势垒放热反应,放出能量为219.18kJ/mol;(Ⅱ)中间体(INT1c)异构化为产物二氟亚烷基环氧乙烷,其势垒为134.71kJ/mol.通道2的反应途径由三步组成:(Ⅰ)反应物首先生成了1个富能中间体(INT1b),为无势垒的放热反应,放出的能量142.77kJ/mol;(Ⅱ)中间体(INT1b)异构化成另一中间体(INT2),其势垒为22.31kJ/mol;(Ⅲ)中间体(INT2)异构化成四元环构型产物P2,其势垒为11.98kJ/mol.  相似文献   

2.
陈界豪  王艳  冯文林 《化学学报》1999,57(9):974-980
用从头算的方法在6-31G水平上研究了3-羟基-3-甲基-2-丁酮(1)和苯甲酰甲酸甲酯(2)热分解反应的机理。结果是:前一反应是经历五元环过渡态到达氢键中间体,它接着直接分解成乙醛的异构体和丙酮,最后乙醛的异构体异构化成乙醛;后一反应经历六元环过渡态形成中间体1(INT1),中间体1(INT1)直接分解成中间体2(INT2)和甲醛,中间体2(INT2)经过第二个过渡态分解成苯甲醛的异构体和一氧化碳,最后苯甲醛异构体异构化成苯甲醛。其中氢迁过程是反应的速控步骤。在MP~2/6-31G//HF/6-31G+ZPE水平上,对应于这两个反应速控步骤的活化位垒分别是251.42kJ/moL和247.94kJ/mol。采用传统过渡态理论计算了两反应的热反应速率常数,理论的计算结果与实验值吻合较好。  相似文献   

3.
1-磷杂富烯能够以2π、4π、6π体系参与环加成反应,并转化为多种磷杂多环化合物.报道了1-磷杂富烯和对苯醌以及N-苯基马来酰亚胺在加热条件下反应合成磷杂多环产物的新方法.研究结果表明对苯醌与1-磷杂富烯通过氧化加成反应产生一个易发生Diels-Alder反应的磷杂环戊烯中间体.该中间体与2分子N-苯基马来酰亚胺经过两次Diels-Alder反应形成磷杂多环化合物.研究还表明1-磷杂富烯环外双键对该反应的发生至关重要.  相似文献   

4.
亚烷基卡宾与丙烯环加成反应机理的理论研究   总被引:2,自引:0,他引:2  
卢秀慧  武卫荣 《化学学报》2003,61(11):1707-1713
用二阶微扰理论研究了单重态亚烷基卡宾与丙烯环加成反应的机理,采用 MP2/6-31G~*方法计算了势能面上各驻点的构型参数、振动频率和能量。根据所得 势能面上的能量数据可以预言,反应(1)的a途径和反应(2)的b途径将是单重态 亚烷基卡宾与丙烯环加成反应的两条相互竞争的主反应通道,两反应途径均由两步 组成,(I)两反应物分别生成了富能中间体INT1a和INT2b,它们均是无势垒的放热 反应,放出的能量分别为60.28和26.33kJ·mol~(-1).(II)中间体INT1a和INT2b分 别通过过渡态TS1a和TS2b异构化为三元环产物P1和四元环产物P2,其势垒分别为 16.43和12.73kJ·mol~(-1)。  相似文献   

5.
用量子化学密度泛函方法详细研究了双原子铜阴离子Cu-2催化CO氧化形成CO2反应在气相中机理.在UB3LYP结合混合基组水平上,优化了所有反应物,中间体,过渡态和产物的几何构型,并进行了振动分析和波函数稳定性测试.计算结果表明最可能反应通道为CO和O2共吸附到Cu-2,然后形成四元环中间体,最后四元环中间体分解形成产物或另一分子CO进攻四元环中间体从而形成产物.第二个CO分子的协同作用比较小,能垒仅相差0.02eV.最难进行的反应通道为CO从Cu2O-2摘取氧原子形成CO2.Cu-2催化CO氧化反应活性比Au-2好.  相似文献   

6.
果糖低温快速热解制备糠醛的机理研究   总被引:1,自引:0,他引:1  
果糖低温快速热解制备5-羟甲基糠醛(HMF)的过程中,糠醛(FF)是一种重要的副产物。通过Py-GC/MS(快速热解-气相色谱/质谱联用)实验考察果糖低温快速热解过程中FF的形成特性。结果表明,FF的产率和相对含量都随着热解温度的提高先增大后减小,并在350℃时达到最大值,最高相对峰面积含量达到11.6%。此外,通过密度泛函理论计算,研究果糖热解形成FF的四条可能途径,计算结果表明,果糖热解形成FF的最优途径为路径2,即果糖首先经历一个协同的六元环过渡态,C5-C6键断裂的同时C6位羟基上的氢与C4位的羟基发生脱水反应,脱出一分子甲醛和一分子水,生成含C4=C5双键的二氢呋喃中间体,随后C2位上的羟基与C1位上的氢通过一个四元环过渡态又脱出一分子水,生成的烯醇中间体中烯醇氢与C3位的羟基最后经历一个六元环的过渡态再脱出一分子水,最终形成FF。  相似文献   

7.
采用密度泛函理论方法研究了[Rh(R,R-DIOP)]+[DIOP=(1R,2R)-1,2-O-异丙叉-1,2-二醚氧基-1,2-双(二苯基磷基)乙烷]催化下苯并环丁酮手性聚稠环过程在气相、四氢乙呋喃(THF)及水中的反应机理.计算结果表明,在气相中反应容易进行,经TS2形成六元环的过程为决速步骤,但产物无明显的对映选择性.在THF中,S-和R-通道的C—C键活化能垒仅由79.5和69.3 kJ/mol提高到80.2和88.8 kJ/mol,未改变反应的实质;Rh与2个C原子的配位明显弱于气相,相对于催化剂和反应物自由能之和,S-和R-通道的反应总能垒分别提高到63.8和68.1 kJ/mol.对于S-通道,溶剂THF使经TS2的能垒升至112.0 kJ/mol,仍为整个过程的决速步骤;然而对R-通道,溶剂使经TS1形成五元环过程的能垒升至91.5 kJ/mol,但使经TS2的能垒由78.9 kJ/mol降至77.7 kJ/mol,IM1→TS1成为决速步骤.在以水为溶剂时,经TS1形成五元环的过程成为2个通道的决速步骤,其在S-和R-通道中的能垒分别为102.5和94.9 kJ/mol.因此,溶剂改变了反应的决速步骤及能垒.3种方法均预测R-通道为主反应路径,但THF能明显增加产物的对映选择性.采用自然键轨道(NBO)电荷分析了反应过程中电荷的变化.  相似文献   

8.
吡啶甲酸铑阳离子催化甲醇羰基化反应机理的理论计算   总被引:1,自引:0,他引:1  
采用有效核近似从头算方法,在HF/LANL2DZ水平下用Berny优化法,对吡啶甲酸铑阳离子催化剂催化甲醇羰基化反应中各基元反应的中间体、过渡态和产物的几何结构进行了优化,过渡态结构通过振动分析进行了确认;计算了各反应的活化位垒.CH_3OH与CO在吡啶甲酸铑阳离子催化剂的作用下反应分4步进行:(1)CH3I氧化加成反应;(2)羰基重排反应:(3)羰基配位反应;(4)CH_3COI还原消除反应.对于各基元反应,CH3I氧化加成反应位垒最高(167.78kJ/mol),是整个反应过程的决速步骤;羰基重排反应和CH_3COI还原消除反应的活化位垒分别为110.67和62.94 kJ/mol,羰基配位反应的位垒为零.与[Rh(CO)_2I_2]-催化剂相比,吡啶甲酸铑阳离子催化剂具有相同的催化机理,但后者催化剂上各步反应的位垒较低.  相似文献   

9.
采用密度泛函理论B3LYP方法研究了GeH2自由基与HNCS的反应机理,并在B3LYP/6-311++G**水平上对反应物,中间体,过渡态进行了全几何参数优化,通过频率分析和IRC确定中间体和过渡态。为了得到更精确的能量值,用QCISD(T)/6-311++G**方法计算了各个驻点的单点能,计算结果表明单重态的锗烯与异硫氰酸的反应有抽提硫、插入N-H键、抽提亚氨基的路径,而经由三元环中间体的抽提硫反应GeH2+HNCS→IM3→TS2→IM4→TS3→IM5→GeH2S+HNC(P1),反应能垒最低,为主反应通道,甲锗硫醛和异氰氢酸为主产物。锗烯经由四元环中间体抽提硫的反应为竞争反应通道。  相似文献   

10.
利用半经验分子轨道理论AM1方法,研究了5-亚甲基-1,3-二噁烷-4,6-二酮与亚甲基烯酮的2,3-位C=C,3,4-位C=O和1,2-位C=O三种双键位置上的环加成反应的反应机理.采用Berny梯度法优化得到反应的过渡态,并进行了振动分析确认.计算结果表明,环加成反应是按照协同的非同步途径进行的,经过一个扭曲的六员环过渡态,前线轨道分析表明反应机理为[4+2]机理.根据AM1优化得到的产物反应物及过渡态的生成热可知三个反应的活化焓分别为27.07kJ·mol-1,32.41kJ·mol-1和137.96kJ·mol-1,2,3-位C=C双键上的环加成反应的活化焓最低,这与实验中只观察到2,3-位C=C双键上环加成产物的结论是一致的.  相似文献   

11.
Mechanisms of cycloaddition reaction between singlet dichloro-vinylidene (R1) and ethylene (R2) have been investigated with MP2 and B3LYP /6-31G* methods, including geometry optimization, vibrational analysis, and energy for the involved stationary points on the potential energy surface. CCSD(T)/6-31G* single point calculations are also applied to the geometries from both methods. CCSD(T) relative energies for the stationary points predicted by MP2 and B3LYP are in a very good agreement. Three reaction pathways are located. Along the first one, one intermediate (INT1) is firstly generated, which then rearranges into a three-membered ring compound (P1) via a small barrier of 5.4 kJ/mol; the other two paths share the other intermediate (INT2), which isomerizes into two four-membered ring compounds (P2 and P3) via a chlorine and a hydrogen transfer, respectively. The barriers of the latter two paths are significantly higher by approximately 25 kJ/mol than that of the former (27.2 and 28.8 vs 5.4 kJ/mol), the major reaction is therefore the formation of P1.  相似文献   

12.
The mechanism of the cycloaddition reaction of forming a germanic hetero-polycyclic compound between singlet alkylidenegermylene and ethylene has been investigated with MP2/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD(T)//MP2/6-31G* method. From the surface energy profile, it can be predicted that the dominant reaction pathway for this reaction consists of three steps: the two reactants first form a three-membered ring intermediate INT1 through a barrier-free exothermic reaction of 35.4 kJ/mol; this intermediate then isomerizes to an active four-membered ring product P2.1 via a transition-state TS2.1 with a barrier of 57.6 kJ/mol; finally, P2.1 further reacts with ethylene to form the germanic hetero-polycyclic compound P3, for which the barrier is only 0.8 kJ/mol. The rate of this reaction path considerably differs from other competitive reaction paths, indicating that the cycloaddition reaction has an excellent selectivity.  相似文献   

13.
The cycloaddition mechanism of the reaction between singlet dimethyl germylidene and formaldehyde has been investigated with MP2/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated with CCSD (T)//MP2/6-31G* method. From the potential energy profile, we predict that the cycloaddition reaction between singlet dimethyl germylidene and formaldehyde has two dominant reaction pathways. First dominant reaction pathway consists of three steps: (1) the two reactants (R1, R2) firstly form an intermediate INT1a through a barrier-free exothermic reaction of 43.0 kJ/mol; (2) INT1a then isomerizes to a four-membered ring compound P1 via a transition state TS1a with an energy barrier of 24.5 kJ/mol; (3) P1 further reacts with formaldehyde(R2) to form a germanic heterocyclic compound INT3, which is also a barrier-free exothermic reaction of 52.7 kJ/mol; Second dominant reaction pathway is as following: (1) the two reactants (R1, R2) firstly form a planar four-membered ring intermediate INT1b through a barrier-free exothermic reaction of 50.8 kJ/mol; (2) INT1b then isomerizes to a twist four-membered ring intermediate INT1.1b via a transition state TS1b with an energy barrier of 4.3 kJ/mol; (3) INT1.1b further reacts with formaldehyde(R2) to form an intermediate INT4, which is also a barrier-free exothermic reaction of 46.9 kJ/mol; (4) INT4 isomerizes to a germanic bis-heterocyclic product P4 via a transition state TS4 with an energy barrier of 54.1 kJ/mol.  相似文献   

14.
The mechanism of the cycloaddition reaction between singlet dichlorosilylene carbene (Cl2Si=C:) and formaldehyde has been investigated with MP2/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by Zero-point energy and CCSD (T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The first dominant reaction pathway consists of two steps: (1) the two reactants (R1, R2) firstly form a four-membered ring intermediate (INT4) through a barrier-free exothermic reaction of 387.9 kJ/mol; (2) intermediate (INT4) then isomerizes to H-transfer product (P4.2) via a transition state (TS4.2) with energy barrier of 4.7 kJ/mol. The second dominant reaction pathway as follows: on the basis of intermediate (INT4) created between R1 and R2, intermediate (INT4) further reacts with formaldehyde (R2) to form the intermediate (INT5) through a barrier-free exothermic reaction of 158.3 kJ/mol. Then, intermediate (INT5) isomerizes to a silicic bis-heterocyclic product (P5) via a transition state (TS5), for which the barrier is 40.1 kJ/mol.  相似文献   

15.
The mechanism of cycloaddition reaction between singlet alkylidene carbene and ethylene has been investigated with second-order Moller-Plesset perturbation theory (MP2). By using 6-31 G^* basis, geometry optimization, vibrational analysis and energetics have been calculated for the involved stationary points on the potential energy surface. The results show that the title reaction has two major competition channels. An energy-rich intermediate (INT) is firstly formed between alkylidene carbene and ethylene through a barrier-free exothermic reaction of 63.62 kJ/mol, and the intermediate then isomerizes to a three-membered ring product (P 1) and a four-memberd ring product (P2) via transition state TS1 and TS2, in which energy barriers are 47.00 and 51.02 kJ/mol, respectively. P1 is the main product.  相似文献   

16.
The mechanism of the cycloaddition reaction of forming germanic bis-heterocyclic compound between singlet germylene carbene and acetone has been investigated with MP2/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD (T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the dominant reaction pathway of the cycloadditional reaction of forming germanic bis-heterocyclic compound consists of three steps: (1) the two reactants firstly form an intermediate INT4 through a barrier-free exothermic reaction of 181.4 kJ/mol; (2) INT4 further reacts with acetone (R2) to form an intermediate (INT5), which is also a barrier-free exothermic reaction of 148.9 kJ/mol; (3) INT5 then isomerizes to a germanic bis-heterocyclic product P5 via a transition state TS5 with an energy barrier of 53.3 kJ/mol.  相似文献   

17.
Mechanisms of the cycloaddition reaction between singlet difluoromethylene carbene and acetone have been investigated with the second‐order Møller–Plesset (MP2)/6‐31G* method, including geometry optimization and vibrational analysis. Energies for the involved stationary points on the potential energy surface (PES) are corrected by zero‐point energy (ZPE) and CCSD(T)/6‐31G* single‐point calculations. From the PES obtained with the CCSD(T)//MP2/6‐31G* method for the cycloaddition reaction between singlet difluoromethylene carbene and acetone, it can be predicted that path B of reactions 2 and 3 should be two competitive leading channels of the cycloaddition reaction between difluoromethylene carbene and acetone. The former consists of two steps: (i) the two reactants first form a four‐membered ring intermediate, INT2, which is a barrier‐free exothermic reaction of 97.8 kJ/mol; (ii) the intermediate INT2 isomerizes to a four‐membered product P2b via a transition state TS2b with an energy barrier of 24.9 kJ/mol, which results from the methyl group transfer. The latter proceeds in three steps: (i) the two reactants first form an intermediate, INT1c, through a barrier‐free exothermic reaction of 199.4 kJ/mol; (ii) the intermediate INT1c further reacts with acetone to form a polycyclic intermediate, INT3, which is also a barrier‐free exothermic reaction of 27.4 kJ/mol; and (iii) INT3 isomerizes to a polycyclic product P3 via a transition state TS3 with an energy barrier of 25.8 kJ/mol. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

18.
The mechanism of the cycloaddition reaction of forming a silapolycyclic compound between singlet methylenesilylene and acetone has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD(T)//MP2/6‐31G* method. From the potential energy profile, we predict that the cycloaddition reaction of forming a silapolycyclic compound between singlet methylenesilylene and acetone has two competitive dominant reaction pathways. First dominant reaction pathway consists of four steps: (I) the two reactants (R1, R2) first form an intermediate (INT1) through a barrier‐free exothermic reaction of 46.2 kJ/mol; (II) intermediate (INT1) then isomerizes to a planar four‐membered ring product (P3) via transition state (TS3) with an energy barrier of 47.1 kJ/mol; (III) planar four‐membered ring product (P3) further reacts with acetone (R2) to form an intermediate (INT4), which is also a barrier‐free exothermic reaction of 40.0 kJ/mol; (IV) intermediate (INT4) isomerizes to a silapolycyclic compound (P4) via transition state (TS4) with an energy barrier of 57.0 kJ/mol. Second dominant reaction pathway consists of three steps: (I) the two reactants (R1, R2) first form a four‐membered ring intermediate (INT2) through a barrier‐free exothermic reaction of 0.5 kJ/mol; (II) INT2 further reacts with acetone (R2) to form an intermediate (INT5), which is also a barrier‐free exothermic reaction of 45.4 kJ/mol; (III) intermediate (INT5) isomerizes to a silapolycyclic compound (P5) via transition state (TS5) with an energy barrier of 49.3 kJ/mol. P4 and P5 are isomeric compounds. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

19.
Xiuhui Lu  Xin Che  Leyi Shi  Junfeng Han 《中国化学》2010,28(10):1803-1809
The mechanism of the cycloaddition reaction of forming germanic hetero‐polycyclic compound between singlet germylene carbene and formaldehyde has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD (T)//MP2/6‐31G* method. From the potential energy profile, we predict that the cycloaddition reaction of forming germanic hetero‐polycyclic compound between singlet germylene carbene and formaldehyde has two competitive dominant reaction pathways. First dominant reaction pathway consists of four steps: (1) the two reactants (R1, R2) first form an intermediate (INT1) through a barrier‐free exothermic reaction of 117.5 kJ/mol; (2) intermediate (INT1) then isomerizes to a four‐membered ring compound (P2) via a transition state (TS2) with an energy barrier of 25.4 kJ/mol; (3) four‐membered ring compound (P2) further reacts with formaldehyde (R2) to form an intermediate (INT3), which is also a barrier‐free exothermic reaction of 19.6 kJ/mol; (4) intermediate (INT3) isomerizes to a germanic bis‐heterocyclic product (P3) via a transition state (TS3) with an energy barrier of 5.8 kJ/mol. Second dominant reaction pathway is as follows: (1) the two reactants (R1, R2) first form an intermediate (INT4) through a barrier‐free exothermic reaction of 197.3 kJ/mol; (2) intermediate (INT4) further reacts with formaldehyde (R2) to form an intermediate (INT5), which is also a barrier‐free exothermic reaction of 141.3 kJ/mol; (3) intermediate (INT5) then isomerizes to a germanic bis‐heterocyclic product (P5) via a transition state (TS5) with an energy barrier of 36.7 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号