首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plugged mesoporous SBA-15 having a 2-D hexagonal pore structure could be directly synthesized under acidic conditions using P123 as a supramolecular template, sodium metasilicate and alcoholamines. The use of alcoholamines seemed to play roles as capturing agents for silica sources that could form internal porous plugs.  相似文献   

2.
SBA-15 mesoporous silica has been functionalized with aminopropyl groups through a simple co-condensation approach of tetraethyl orthosilicate (TEOS) and (3-aminopropyl)triethoxysilane (APTES) using amphiphilic block copolymers under acidic conditions. The organic-modified SBA-15 materials have hexagonal crystallographic order, pore diameter up to 60 A, and the content of aminopropyl groups up to 2.3 mmol g(-1). The influences of TEOS prehydrolysis period and APTES concentration on the crystallographic order, pore size, surface area, and pore volume were examined. TEOS prehydrolysis prior to the addition of APTES was found essential to obtain well-ordered mesoporous materials with amino functionality. The amount of APTES incorporated in the silica framework increased with the APTES concentration in the synthesis gel, while the ordering of the mesoporous structure gradually decreased. Analysis with TG, IR, and solid state NMR spectra demonstrated that the aminopropyl groups incorporated in SBA-15 were not decomposed during the preparation procedure and the surfactant P123 was fully removed through ethanol extraction. The modified SBA-15 was an excellent base catalyst in Knoevenagel and Michael addition reactions.  相似文献   

3.
Mesoporous amine-functionalized SBA-15 silica has been synthesized directly by the co-condensation of tetraethyl orthosilicate (TEOS) and aminopropyl-trimethoxysilane (APTMS) under acidic conditions with an APTMS/(APTMS + TEOS) molar ratio of 10%. The effect of synthesis conditions, including TEOS pre-hydrolysis, as well as the heating temperature and time, on the mesoscopical order and pore structure of the functionalized SBA-15 have been studied in detail by means of powder X-ray diffraction, nitrogen sorption, transmission electron microscopy, infrared spectra and solid state 29Si nuclear magnetic resonance. A functionalized SBA-15 silica with a highly ordered two-dimensional P6 mm hexagonal symmetry and a narrow pore size distribution centered at 6 nm can be obtained if TEOS is allowed to pre-hydrolyze for 2 h. For the sample with TEOS pre-hydrolysis time of 4 h, aging at 50°C or 150°C leads to a more ordered pore arrangement compared to 100°C and also a narrower pore size distribution with larger pore volume. Increasing aging time is in favor of the formation of mesoscopically ordered structure, but fails to obtain a superior pore structure.  相似文献   

4.
Synthesis of carboxyl-modified rod-like SBA-15 by rapid co-condensation   总被引:1,自引:0,他引:1  
Carboxyl-modified SBA-15 rod-like mesoporous materials have been synthesized by a facile rapid co-condensation of tetraethylorthosilicate (TEOS) and 2-cyanoethyltriethoxysilane (CTES), followed by hydrolysis of cyanide groups in sulfuric acid. The concentration of carboxylic groups was varied by changing the silica source ratio of CTES/TEOS from 0.05 to 0.3. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the uniform ordered mesoporous structure and rod-like morphology of SBA-15 have been preserved even at the high concentration of carboxylic groups employed. Characterization by Fourier transformed infrared spectroscopy (FTIR), solid-state NMR investigation indicated that carboxylic groups have been successfully grafted onto the surface of SBA-15 through siloxane bonds [(O(3))SiCH(2)CH(2)COOH. The negative charges of the modified SBA-15 materials were enhanced by the presence of the carboxylic groups on the surface. The capacity of lysozyme adsorption of the modified SBA-15 materials were found to be significantly improved as compared with pure silica SBA-15. The maximum amount of lysozyme adsorption on carboxyl-modified was increased with the pH of solution increased from 5.5 to 9.0.  相似文献   

5.
A facile one-step method was proposed for the successful synthesis of Ag-nanoparticle-loaded mesoporous silica SBA-15 composites, where silver ions and their corresponding reductant aniline were added in the traditional synthetic system of mesoporous silica SBA-15 containing P123 as the surfactant and TEOS as the silica source. Mesoporous silica SBA-15 and Ag nanoparticles were spontaneously formed with Ag nanoparticles embedded in channels and even implanted in frameworks of mesoporous silica SBA-15. A tentative formation process was then proposed according to experimental observations. Furthermore, catalytic activities of Ag-nanoparticle-loaded silica SBA-15 composites toward the reduction of 4-nitrophenol in the presence of NaBH(4) and the reduction of H(2)O(2) were also investigated.  相似文献   

6.
非水介质中合成介孔分子筛MCM-41   总被引:1,自引:0,他引:1  
首次采用十六烷基三甲基溴化铵为模板剂、正硅酸乙酯为硅源, 分别使用无机和有机弱碱, 溶剂热晶化法在非水甘油介质中合成了介孔分子筛MCM-41, 通过XRD, N2吸附-脱附, TG-DTG, IR, SEM等测试手段对样品进行了表征分析, 结果表明在甘油体系中得到的样品具有优良的孔结构性质. 相比于氢氧化钠, 以有机弱碱(无水乙二胺、三乙胺)作为碱源, 可以得到有序性更好、结晶度高的样品, 样品具有较窄的孔径分布.  相似文献   

7.
Highly ordered large pore SBA-15 silica functionalized with up to 16% aminopropyl groups, which gave high catalytic activity and selectivity toward flavanone synthesis through aldol condensation and subsequent intramolecular Michael addition of benzaldehyde and 2'-hydroxyacetophenone, was synthesized for the first time via co-condensation of tetraethylorthosilicate (TEOS) and 3-aminopropyltriethoxysilane (APTES) using an amphiphilic block copolymer as the structure-directing agent.  相似文献   

8.
Amino-functionalized SBA-15 type mesoporous silicas having unique hexagonal platelet morphologies with short channels (100-300 nm) running parallel to the thickness of the nanostructured hexagonal platelet type morphologies have been directly synthesized by co-condensation of aminopropyltriethoxysilane (APTES) and sodium metasilicate as a silica source in the presence of Pluronic P123 triblock copolymer as a structure directing agent.  相似文献   

9.
Mesoporous SBA-16 and SBA-15 were studied in order to control their possible morphologies. SBA-16 is synthesized using a silicon source (tetraethoxysilane, TEOS) and a ternary system consisting of surfactant F127 (EO106PO70EO106), water, and butanol. The same ternary system, with higher butanol concentration, is used to form SBA-15 material as well. An increase of the TEOS concentration results in a morphology shift of SBA-16 from micron-sized spheres, over randomly shaped aggregated particles, to macrospheres with a size of 15 mm. An identical increase in TEOS concentration also results in the formation of SBA-15 macrospheres, which can be controlled in size. Micron-sized spheres of SBA-15 were formed using a quaternary system of surfactant P123 (EO20PO70EO20), cetyltrimethylammonium bromide (CTAB), ethanol, and water. All mesoporous silica materials were characterized using SEM, XRD, and N2 sorption techniques.  相似文献   

10.
CdS nanoparticles, as prepared in reverse micellar systems, were incorporated into alkanedithiol-modified Zn-doped SBA-15 mesoporous silica (dtz.sbnd;ZnSBA-15; pore diameter, ca. 4 nm), which were themselves prepared via hydrolysis of tetraethylorthosilicate (TEOS) in the presence of Zn(NO(3))(2) and triblock copolymer, as a nonsurfactant template and pore-forming agent, followed by contact with dithiol molecules. A particle-sieving effect for the dtz.sbnd;ZnSBA-15 was observed, in that the incorporation of the nanoparticles was remarkably decreased with increasing the nanoparticle size. The resulting CdSz.sbnd;ZnSBA-15 composite was then used as photocatalysts for the generation of H(2) from 2-propanol aqueous solution. Under UV irradiation (lambda>300 nm), a high photocatalytic activity was observed for this composite material. This is effected by electron transfer from the photoexcited ZnS (dithiol-bonded Zn on SBA-15) to CdS nanoparticles. The photocatalytic activity is increased with a decrease in the number of methylene groups in the dithiol molecules, according to the rank order 1,10-decanedithiol < 1,6-hexanedithiol < 1,2-ethanedithiol.  相似文献   

11.
在SBA-15介孔材料100L中试和2m3工业放大合成基础上,采用多次水解合并晶化、母液循环使用和以工业正硅酸乙酯(TEOS)原料为硅源三种改良方法,提高SBA-15材料的合成效率,减少废酸水排放和降低原料成本.结果表明,母液经加热蒸除乙醇至5%和工业原料TEOS经蒸除沸点低于163oC的前馏分后使用,在有效保证合成出结构性能良好SBA-15材料的同时,可使生产效率提高1倍,分别减少50%和90%三嵌段共聚物和盐酸用量,且几乎无废水排放,最终节约SBA-15原料成本约60%.这些改良方法有利于SBA-15材料工业生产时的环境保护和成本控制,具有很高可行性.  相似文献   

12.
Nanocast silica (NCS-1) was synthesized by a casting process by employing the mesoporous carbon CMK-3 (the replica of SBA-15) as a template, tetraethoxysilane (TEOS) as the silica source, and hydrochloric acid (HCl) as the catalyst. The ordered carbon template was removed by employing different methods, such as calcination, thermal treatment followed by calcination, and controlled combustion. According to XRD and TEM characterization, NCS-1 exhibits an ordered structure with hexagonal symmetry and retains the morphology of the original SBA-15 used for the synthesis of CMK-3 over two replication steps on the nanometer scale. This demonstrates the well-connected porosity in CMK-3 type carbon, which can be used as a mold to synthesize mesostructured materials. The nitrogen adsorption isotherms generally show type IV shape, indicating mesoporous characteristics. The structure of NCS-1 is strongly influenced by variables of the nanocasting process, such as the loading amount of silica, hydrolysis temperature, and carbon removal methods. The surface area, pore size, and pore volume of NCS-1 can be tuned to a certain range by varying these parameters.  相似文献   

13.
Nanoporous silica with narrow pore size distribution has attracted increasing attention as a novel material for separations and reactions involving large molecules. SBA-15 has been synthesized in an acidic medium using a triblock copolymer as template. In this work, the SBA-15 was synthesized by the hydrothermal treatment at 373 K for 48 h, of a gel with the following overall molar composition: 1.0TEOS:0.017P123:5.7HCl:193H2O, where TEOS is tetraethyl orthosilicate and P123 is poly(ethylene oxide, propylene oxide and 1,4-dioxane). The obtained material was characterized by thermogravimetry, X-ray diffraction, infrared spectroscopy and BET surface area. A kinetic study using the model free model was accomplished in the stage of decomposition of the template (P123). The obtained value of the apparent activation energy was ca. 131 kJ mol–1.  相似文献   

14.
采用MOR纳米晶和正硅酸四乙酯为硅源,P123三嵌段共聚物为模板剂水热合成MOR/SBA-15复合分子筛催化剂。采用XRD、SEM、TEM和EDX等手段对催化剂进行了表征,在固定床反应器中评价二甲醚制乙醇催化性能。结果表明,通过控制合适的MOR纳米晶种及MOR纳米晶种在SBA-15水热合成体系中的添加量,可以成功地将MOR纳米晶作为SBA-15的结构单元嫁接到SBA-15的介孔骨架中,水热合成的MOR/SBA-15复合分子筛催化剂同时具有MOR和SBA-15的XRD特征衍射峰,相比于SBA-15,其比表面积和总孔体积由756 m2·g~(-1),1.07 cm3·g~(-1)降低至628 m2·g~(-1),0.85 cm3·g~(-1),平均孔径由8.1 nm提高到9.3nm,Cu修饰的MOR/SBA-15复合分子筛催化剂同时具有Cu MOR羰基化和Cu SBA-15加氢的双功能催化性能,其催化剂评价结果显示二甲醚转化率为43.6%左右,乙醇选择性为95.3%,Cu MOR/SBA-15复合分子筛催化剂实现了二甲醚到乙醇的一步转化。  相似文献   

15.
HCl对有序介孔氧化硅结构与形貌的影响   总被引:4,自引:0,他引:4  
赵春霞  陈文  刘琦  田高 《物理化学学报》2006,22(10):1201-1205
以三嵌段共聚物P123为有机模板导向剂、正硅酸乙酯TEOS为无机硅源, 在HCl存在的强酸性环境下, 采用水热法合成了有序介孔分子筛SBA-15. 采用XRD、SEM、TEM、N2吸附-脱附等手段对产物的结构与形貌进行了分析, 考察了HCl用量对有序介孔材料结构及形貌的影响. 结果表明, 在合成有序介孔氧化硅时, HCl发挥了催化和中间离子的双重作用, 促使棒状胶束形成六方有序排列, 降低SBA-15中微孔的数量, 而且对合成有序介孔氧化硅SBA-15的形貌有显著影响. 适宜的HCl用量对形成“珍珠链状”形貌的、热稳定性优良的SBA-15介孔材料具有重要作用.  相似文献   

16.
Hexagonally ordered SBA-15 mesoporous silica spheres with large uniform pore diameters are obtained using the triblock copolymer, Pluronic P123, as template with a cosurfactant cetyltrimethylammonium bromide (CTAB) and the cosolvent ethanol in acidic media. A series of surface modified SBA-15 silica materials is prepared in the present work using mono- and trifunctional alkyl chains of various lengths which improves the hydrothermal and mechanical stability. Several techniques, such as element analysis, nitrogen sorption analysis, small angle X-ray diffraction, scanning electron microscopy (SEM), FTIR, solid-state (29)Si and (13)C NMR spectroscopy are employed to characterize the SBA-15 materials before and after surface modification with the organic components. Nitrogen sorption analysis is performed to calculate specific surface area, pore volume and pore size distribution. By surface modification with organic groups, the mesoporous SBA-15 silica spheres are potential materials for stationary phases in HPLC separation of small aromatic molecules and biomolecules. The HPLC performance of the present SBA-15 samples is therefore tested by means of a suitable test mixture.  相似文献   

17.
赵春霞  陈文  刘琦  田高 《无机化学学报》2006,22(9):1600-1604
分别以十六烷基三甲基溴化铵(CTAB)和聚乙氧基-聚丙氧基-聚乙氧基三嵌段共聚物(P123)为模板剂、正硅酸乙酯(TEOS)为硅源,采用水热法合成了有序介孔分子筛MCM-41和SBA-15。选择Eu(DBM)3phen为客体,有序介孔氧化硅MCM-41和SBA-15为载体,分别在氯仿中进行分子组装,制备出具有较强发光性能的介孔复合材料Eu(DBM)3phen/APTES-MCM-41(EAM)和Eu(DBM)3phen/APTES-SBA-15(EAS)。采用XRD、TEM、N2吸附-脱附和荧光光谱等对产物的结构与性能进行了分析。结果表明,Eu(DBM)3phen组装进有序介孔氧化硅的孔道中后,发光纯度提高。而且孔径越小,发光纯度越高。选用较大孔径的SBA-15为载体,在不显著影响发光纯度的同时,可以获得较高的发光强度。  相似文献   

18.
Catalytic hydrodeoxygenation (HDO) of anisole, a methoxy-rich lignin-derived bio-oil model compound, was carried out over a series of Ni-containing (5, 10, 20, and 30 wt%) catalysts with commercial silica and ordered mesoporous silica SBA-15 as support. Both supports and catalysts were characterized by N2 adsorption–desorption isotherms, X-ray diffraction, CO chemisorption, and transmission electron microscopy (TEM). Catalytic reaction was performed at 250 °C and 10 bar H2 pressure. Depending on the catalyst support used and the content of active metal, the catalytic activity and product distribution changed drastically. Increase of the nickel loading resulted in increased anisole conversion and C6 hydrocarbon (benzene and cyclohexane) yield. However, loading more Ni than 20 wt% resulted in a decrease of both conversion and C6 yield due to agglomeration of Ni particles. In addition, Ni/SBA-15 samples exhibited much stronger catalytic activity and selectivity toward C6 hydrocarbon products compared with Ni/silica catalysts. The differences in catalytic activity among these catalysts can be attributed to the effect of the pore size and pore structure of mesoporous SBA-15. SBA-15 can accommodate more Ni species inside channels than conventional silica due to its high pore volume with uniform pore structure, leading to high HDO catalytic activity.  相似文献   

19.
20.
Formation of titanium nitride nanoparticles within mesoporous silica SBA-15   总被引:2,自引:0,他引:2  
We report the first synthesis of titanium nitride (TiN) nanoparticles inside the nanoscale channels of mesoporous silica SBA-15. The TiN precursor, Ti(NMe(2))(4) in toluene, was incorporated into the methyl group-modified channels of the SBA-15 powder. The functionalization of pore surfaces with methyl groups generates hydrophobic surfaces that facilitate impregnation with Ti(NMe(2))(4) and minimizes reactions between the TiN precursor and the hydroxyl groups on the surface of SBA-15. Formation of TiN nanoparticles inside the mesoporous channels of SBA-15 was carried out by subsequent ammonolysis at high temperatures (700-750 degrees C). The final products have been characterized by TEM and EELS images, powder XRD patterns, FTIR spectra, UV-vis absorption spectra, and nitrogen adsorption isotherm measurements to confirm the presence and distribution of TiN nanoparticles in the SBA-15 samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号