首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
蔡汉成  高惠  方银军  夏咏梅  蒋陈兰  方云 《化学学报》2004,62(9):923-928,M006
以戊醇同分异构体与n 辛酸为反应底物 ,比较在三种模式下进行的非水相酶催化酯化反应 :( 1)在线微波辐射 (MI)模式 ;( 2 )常规加热 (CH )模式 ;( 3 )离线微波预辐射酶 +常规加热 (pre MI +CH)模式 ,以揭示微波辐射 -酶耦合催化(MIECC)的耦合效应 .实验结果表明 ,MIECC在提高酯化反应初速率方面表现出明显的耦合效应 ,可加快反应初速率 2 .5~4.5倍 .醇结构对MIECC有影响 ,在反应初速率及平衡产率方面均遵循伯醇 >仲醇 >叔醇的规律 .MI模式或pre MI +CH模式对酶均有激活作用 ,经微波预辐射的酶产生某种记忆效应 ,酶能持久性地被改变催化活性  相似文献   

2.
将微波辐射用于非水相酶催化可以获得很多有别于常规加热下的反应结果。本文讨论了微波的非热效应在酶促反应中的表现,探讨了微波辐射对酶的结构、构象、活性及酶催化反应动力学的影响,以及微波辐射-酶耦合催化对反应的对映选择性、底物专一性、前手性选择性和区域选择性的影响。在大多数场合,适当的微波辐射不会损伤酶活而且可以提高反应速率,而对酶特异性的影响则不一而论。  相似文献   

3.
微波辐射-酶耦合催化(MIECC)反应   总被引:3,自引:0,他引:3  
将微波辐射用于非水相酶催化可以获得很多有别于常规加热下的反应结果.本文讨论了微波的非热效应在酶促反应中的表现,探讨了微波辐射对酶的结构、构象、活性及酶催化反应动力学的影响,以及微波辐射-酶耦合催化对反应的对映选择性、底物专一性、前手性选择性和区域选择性的影响.在大多数场合,适当的微波辐射不会损伤酶活而且可以提高反应速率,而对酶特异性的影响则不一而论.  相似文献   

4.
将微波辐射用于非水相酶催化可以获得很多有别于常规加热下的反应结果.本文讨论了微波的非热效应在酶促反应中的表现,探讨了微波辐射对酶的结构、构象、活性及酶催化反应动力学的影响,以及微波辐射-酶耦合催化对反应的对映选择性、底物专一性、前手性选择性和区域选择性的影响.在大多数场合,适当的微波辐射不会损伤酶活而且可以提高反应速率,而对酶特异性的影响则不一而论.  相似文献   

5.
脂肪族聚酯是一种可生物降解的新型高聚物,可通过化学催化、发酵和酶催化来合成.酶催化合成聚酯是一种新型的环境友好绿色化学技术,可以在温和条件下高效的合成聚酯,有着传统聚合方法难以比拟的优势.尤其是特种酶的应用,为传统方法难以合成的聚酯,开辟了一条新的合成途径.本文综述了脂肪酶催化缩聚、酯交换、内酯开环聚合等聚酯合成方法,并讨论了反应参数(如溶剂、温度、酶和单体的浓度)对反应的影响.  相似文献   

6.
综述了近年来微波辐射在非水相酶学催化方面的应用,重点介绍了微波辐射对非水相酶催化反应动力学、反应产率、选择性及酶学性质的影响。参考文献43篇。  相似文献   

7.
在有机溶剂中酶催化的不对称反应   总被引:1,自引:1,他引:1  
酶作为催化剂在有机合成中有着巨大的潜力,这在文献中有很多报道,但酶催化的反应作为经典的有机合成方法还很少,为什么呢?这是因为传统的合成方法以有机溶剂为介质而酶催化的反应以往要在水溶液中进行,另外,水会  相似文献   

8.
许建明  林贤福 《有机化学》2007,27(12):1473-1478
介绍了近几年来酶的催化多功能性及其应用于有机合成反应研究的最新进展. 包括酶催化多功能性的几种主要类型和相应催化多功能性在Michael加成、Markovnikov加成、羟醛缩合反应、氧化反应及串联反应中的应用.  相似文献   

9.
外消旋体的(动态)动力学拆分反应是制备手性化合物的重要方法之一.反应可以通过酶催化或非酶催化的手段来实现,也可以通过两种方法的有机结合来进行.在非酶催化反应中,路易斯酸碱催化是比较常用的方法,它们被广泛地用于多种外消旋体的(动态)动力学拆分反应中,目前在该领域取得了很大的进展.本文讨论了路易斯酸及路易斯碱催化体系在外消旋体(动态)动力学拆分反应中应用的最新进展.  相似文献   

10.
近年来,温和、绿色的光化学和电化学反应在有机合成中得到了广泛的应用.为了进一步提升光、电反应潜力,有机化学家们致力于在单一反应体系中使用这两种策略来促进有机转化.一系列光电联合催化策略被开发出来,目前主要的光电联合催化策略是电化学介导的光氧化还原催化.此外,光激发辅助、电化学主导氧化还原的光电联合催化策略也逐渐展现出其...  相似文献   

11.
Microwave activation of enzymatic catalysis   总被引:2,自引:0,他引:2  
Microwave irradiation can be used to regulate biocatalysis. Herein, the utilization of hyperthermophilic enzymes in a microwave reactor is reported. While these enzymes are inactive at low temperatures, they can be activated with microwave irradiation. To the best of our knowledge, this is the first illustration of a specific microwave effect in enzymatic catalysis.  相似文献   

12.
Several studies have used microwaves as a heat source for carrying out various types of reactions employing circulation reaction vessels. The microwave flow chemical synthesis methodology is most appropriate in the use of microwaves in chemical syntheses. It can attenuate the problem of microwave heating (non‐uniform heating and penetration depth) and maximize the benefits (rapid heating and first temperature adjustments). In this brief review, we examine and explain some of the relevant features of microwave heating with applicative examples of the usage of microwave flow chemistry equipment in carrying out organic syntheses, enzymatic reactions, and (not least) nanoparticle syntheses.  相似文献   

13.
Colloidal inorganic nanocrystals stand out as an important class of advanced nanomaterials owing to the flexibility with which their physical-chemical properties can be controlled through size, shape, and compositional engineering in the synthesis stage and the versatility with which they can be implemented into technological applications in fields as diverse as optoelectronics, energy conversion/production, catalysis, and biomedicine. The use of microwave irradiation as a non-classical energy source has become increasingly popular in the preparation of nanocrystals (which generally involves complex and time-consuming processing of molecular precursors in the presence of solvents, ligands and/or surfactants at elevated temperatures). Similar to its now widespread use in organic chemistry, the efficiency of "microwave flash heating" in dramatically reducing overall processing times is one of the main advantages associated with this technique. This Review illustrates microwave-assisted methods that have been developed to synthesize colloidal inorganic nanocrystals and critically evaluates the specific roles that microwave irradiation may play in the formation of these nanomaterials.  相似文献   

14.
房东旭  刘智焬  江治 《分子催化》2022,36(5):456-466
微波是一种能量传递方式。与传统电加热相比,微波加热具有加热速度快、热惯性小、选择性加热等特点,因而被视为一种优质的能量来源。微波催化是一种使用微波对反应系统供能,从而推动催化反应进行的化学过程。近年来,许多研究者致力于探索和发展微波催化技术,包括利用微波技术提升化学反应速率、开发具有出色微波吸收能力的催化剂、建立节能环保的微波催化系统等。本文首先介绍了微波的相关理论,讲述了材料对微波的吸收原理;然后从微波催化降解挥发性有机物(Volatile Organic Compounds, VOCs)、微波催化污水处理、微波催化生物质热解和微波催化碳氢化合物转化等方面综述了微波催化在能源环境中的应用;最后对微波催化过程的机理展开了讨论。  相似文献   

15.
Efficient syntheses of 3,4-dihydropyrimidin-2-(1H)-ones and the corresponding thioxo derivatives using 1,3-dibromo-5,5-dimethylhydantoin (DBH) catalysis of a one-pot three-component Biginelli reaction of aldehydes, ethyl acetoacetate, and urea or thiourea under microwave irradiation are described. The advantages of this method are its short reaction times, high yields of the products, inexpensive and commercially available catalyst, and solvent-free conditions. Typical isolated yields exceed 70 % for arylaldehydes (9 examples) and aliphatic aldehydes (2 examples).  相似文献   

16.
The influence of microwave heating on the stability of immobilized Candida antarctica lipase B was studied at 100 degrees in an organic medium. The microwave radiation was carried out before enzymatic reaction (storage conditions) or during the enzymatic catalysis (use conditions). In both cases, enzymatic stability was higher under microwave heating than under conventional thermal heating, in strictly identical operating conditions. Furthermore, the gain of enzymatic stability under microwave heating appears to be higher in a more polar solvent, which interacts strongly with the microwave field. Our results suggest that microwave radiation has an effect, not related to temperature, on the process of enzymatic inactivation.  相似文献   

17.
A fluorometric method for assaying the activity of horseradish peroxidase (HRP) in organic media has been developed. This method is designed on the basis of the disparity in the spectral properties of substrates and corresponding resultant polymers. It monitors the fluorescence quenching of substrate during enzymatic catalysis, and works efficiently in a number of organic media (such as dioxanewater mixture, acetone-water mixture, and alcohol-water mixture, and so forth) toward many substrates. This assay is simpler, more rapid, and more convenient compared with the commonly used HPLC method. It is qualitatively reproducible and can also be used for quantitative calculation of the substrate conversion.  相似文献   

18.
Microwaves in organic synthesis. Thermal and non-thermal microwave effects   总被引:2,自引:0,他引:2  
Microwave irradiation has been successfully applied in organic chemistry. Spectacular accelerations, higher yields under milder reaction conditions and higher product purities have all been reported. Indeed, a number of authors have described success in reactions that do not occur by conventional heating and even modifications of selectivity (chemo-, regio- and stereoselectivity). The effect of microwave irradiation in organic synthesis is a combination of thermal effects, arising from the heating rate, superheating or "hot spots" and the selective absorption of radiation by polar substances. Such phenomena are not usually accessible by classical heating and the existence of non-thermal effects of highly polarizing radiation--the "specific microwave effect"--is still a controversial topic. An overview of the thermal effects and the current state of non-thermal microwave effects is presented in this critical review along with a view on how these phenomena can be effectively used in organic synthesis.  相似文献   

19.
Biotransformations already represent an effective and sometimes preferable alternative to chemical synthesis for the production of fine chemicals and optically active compounds. To further widen the versatility of the biological approach, the so-called "nonaqueous enzymology", which now represents an important area of research and biotechnological development, has emerged in the last ten years or so. This new methodology is especially suitable for the modification of precursors of pharmaceutical compounds and fine chemicals, which, in most cases, are insoluble or poorly soluble in water. Even though the idea of carrying out an enzymatic process in organic solvent was initially considered with scepticism, biocatalysis in such media is now investigated and exploited in numerous academic and industrial laboratories. One of the reasons that makes enzymatic catalysis in nonaqueous media so appealing, is the important new properties that enzymes exhibit in organic solvents. For example, they are often more stable and can catalyze reactions that are impossible or difficult in water. Furthermore, enzyme selectivity can also differ from that in water and can change, or even reverse, from one solvent to another. This phenomenon, which can be called "medium engineering", can be exploited as a valid alternative to protein engineering. The first part of this review examines the thermodynamic, kinetic, spectroscopic, and physical approaches that have been adopted to investigate the factors that affect activity, stability, structure, and selectivity of enzymes in organic solvents. These combined studies have brought the understanding of enzyme catalysis in organic solvents to a level almost comparable to that reached for biocatalysis in aqueous media. The second part surveys a number of the synthetic applications of enzymes in organic media, which span from the preparation of milligrams of specifically labeled compounds to the modification of fats on multiton scale and from the preparation of complex key intermediates for the pharmaceutical industry to the synthesis of polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号