首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 975 毫秒
1.
A polyaniline-modified screen-printed carbon electrode (PANI/SPCE) was prepared by electropolymerization for the construction of a novel disposable cell impedance sensor. The conductive polymer improved greatly the electron transfer of SPCE and was very effective for cell immobilization. The adhesion of cells increased the electron transfer resistance (Ret) of redox probe on the PANI/SPCE surface, producing an impedance sensor for K562 leukaemia cells with a semilogarithm linear range from 104 to 107 cells ml−1 and a limit of detection of 8.32 × 103 cells ml−1 at 10σ. The proliferation of cells on the conductive polymer increased the Ret, leading to a novel way to monitor the growth process of cells on the PANI/SPCE. The electrochemical monitoring indicated K562 leukaemia cells cultured in vitro on the PANI surface were viable for 60 h, consistent with the analysis from microscopic imaging and MTT assay. This method for monitoring the surface proliferation and detecting the number of viable cells was simple, low-cost and disposable, thus providing a convenient avenue for electrochemical study of cell immobilization, adhesion, proliferation and apoptosis.  相似文献   

2.
A novel strategy to quantify the cell number of leukemia K562A cells using electrochemical immunosensor was developed by effective surface immunoreaction between P-glycoprotein (P-gp) on cell membrane and P-gp mouse monoclonal antibody bound on an epoxysilane monolayer modified glassy carbon electrode. The surface morphologies of the epoxysilane monolayer and the bound antibodies were studied with atomic force microscopy. The binding of target K562A cells onto the immobilized antibodies increased the electron-transfer impedance of electrochemical probe, which depended linearly on the cell concentration in the range of 5.0 × 104–1.0 × 107 cells mL−1. The detection limit of the immunosensor was 7.1 × 103 cells mL−1. The proposed strategy showed acceptable reproducibility with an RSD of 3.4% for the linear slope and good precision with the RSD of 3.7% and 3.0% examined at the cell concentrations of 2.0 × 106 and 1.0 × 107 cells mL−1.  相似文献   

3.
An electropolymerized melatonin modified glassy carbon electrode (EPMT/GCE) was prepared by electrochemically polymerizing of melatonin in a 0.04 mol l?1 perchloric acid solution. In KCl solution, Ca2+ was found to perform a reversible complex reaction on the EPMT/GCE to produce a sharp complex adsorption wave. The configuration of the electropolymerized membrane was characterized by scanning electron microscope and various electrochemical techniques. Based on which, a novel sensitive Ca2+ electrochemical sensor was established. The peak current showed a linear relationship with Ca2+ concentration in range of 6.2 × 10?7–1.0 × 10?4 mol l?1 with detection limit of 4.5 × 10?7 mol l?1. The developed electrochemical sensor has been used for determination of Ca2+ in body fluid.  相似文献   

4.
Two simple and sensitive high performance liquid chromatographic (HPLC) methods have been developed for the simultaneous determination of three different quinolones: enrofloxacin, lomefloxacin and ofloxacin in their pure and dosage forms, one with reversed phase HPLC and the other with ion-pair HPLC. In reversed phase HPLC, method (A), the mobile phase consists of 2.18% aqueous solution of KH2PO4 with pH adjusted to 2.4 ± 0.2 with acetonitrile (80:20; v/v), the mobile phase pumped at flow rate of 1.2 ml min?1. A Neucleosil C18 column (10 μm, 100 Å), 250 mm length × 4.6 mm diameter was utilized as stationary phase. Detection was affected spectrophotometrically at 294 nm. While in ion-pair HPLC, method (B), the mobile phase was aqueous solution of 0.65% sodium perchlorate and 0.31% ammonium acetate adjusted to pH 2.2 ± 0.2 with orthophosphoric acid: acetonitrile (81:19; v/v), the mobile phase pumped at flow rate of 1.5 ml min?1. A μ bondapack C18 column (10 μm, 100 Å), 250 mm length × 4.6 mm diameter was utilized as stationary phase. Detection was affected spectrophotometrically at 294 nm. Linearity ranges for enrofloxacin, lomefloxacin and ofloxacin were 4.0–108, 7.0–112 and 8.0–113 μg ml?1, respectively using method A and 8.0–112, 7.0–112 and 5.0–105 μg ml?1, respectively applying method B. Minimum detection limits obtained were 0.013, 0.023 and 0.035 μg ml?1 for enrofloxacin, lomefloxacin and ofloxacin, respectively using method A, and 0.028, 0.023 and 0.011 μg ml?1 using method B. The proposed methods were further applied to the analysis of enrofloxacin in injection and tablets containing the ofloxacin and lomefloxacin drugs, and the results were satisfied.  相似文献   

5.
Binding of copper to three peptide fragments of prion (Cu2+ binding sites: 60–91, 92–96 and 180–193 amino acid residues) was investigated by anodic stripping voltammetry to determine the stoichiometries of Cu2+-prion peptide interactions. The method relies on the synthesis of N-terminally acetylated/C-terminally amidated peptide fragments of prion by solid-phase synthesis and direct monitoring of the oxidation current of copper in the absence and presence of each prion fragment. Titration curves of Cu2+ with Ac-PHGGGWGQ-NH2, Ac-GGGTH-NH2 and Ac-VNITKQHTVTTTT-NH2 were obtained in concentrations ranging from 8.52 × 10?7 to 5.08 × 10?6, 3.95 × 10?7 to 1.94 × 10?6 and 7.82 × 10?8 to 4.51 × 10?7 M, respectively. The acquired data were used to calculate the stoichiometries (one peptide per Cu2+ ion for all the three studied systems) and apparent dissociation constants (Kd = 4.37 × 10?8–3.50 × 10?10 M) for the three complexes.  相似文献   

6.
Using porous cuprous oxide (Cu2O) microcubes, a simple non-enzymatic amperometric sensor for the detection of H2O2 and glucose has been fabricated. Cyclic voltammetry (CV) revealed that porous Cu2O microcubes exhibited a direct electrocatalytic activity for the reduction of H2O2 in phosphate buffer solution and the oxidation of glucose in an alkaline medium. The non-enzymatic amperometric sensor used in the detection of H2O2 with detection limit of 1.5 × 10?6 M over wide linear detection ranges up to 1.5 mM and with a high sensitivity of 50.6 μA/mM. This non-enzymatic voltammetric sensor was further utilized in detection of glucose with a detection limit of 8.0 × 10?7 M, a linear detection range up to 500 μM and with a sensitivity of ?70.8 μA/mM.  相似文献   

7.
A new type of amperometric hydrogen peroxide biosensor was fabricated by entrapping horseradish peroxidase (HRP) in the organic–inorganic hybrid material composed of zirconia–chitosan sol–gel and Au nanoparticles (ZrO2–CS–AuNPs). The sensitivity of the biosensor was enhanced by a flowerlike polymer–copper nanostructure composite (pPA–FCu) which was prepared from co-electrodeposition of CuSO4 solution and 2,6-pyridinediamine solution. Several techniques, including UV–vis absorption spectroscopy, scanning electron microscopy, cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy were employed to characterize the assembly process and performance of the biosensor. The results showed that this pPA–FCu nanostructure not only had excellent redox electrochemical activity, but also had good catalytic efficiency for hydrogen peroxide. Also the ZrO2–CS–AuNPs had good film forming ability, high stability and good retention of bioactivity of the immobilized enzyme. The resulting biosensors showed a linear range from 7.80 × 10?7 to 3.7 × 10?3 mol L?1, with a detection limit of 3.2 × 10?7 mol L?1 (S/N = 3) under optimized experimental conditions. The apparent Michaelis–Menten constant was determined to be 0.32 mM, showing good affinity. In addition, the biosensor which exhibits good analytical performance, acceptable stability and good selectivity, has potential for practical applications.  相似文献   

8.
The behavior of a modified carbon platinum electrode (Pt) for lead(II) determination by square wave voltammetry (SWV) was studied. The modified electrode is obtained by electrodeposition of hydroxyapatite (HAP) on the surface of a bare platinum electrode. The new electrode (HAP/Pt) revealed interesting electroanalytical detection of lead(II) based on the adsorption of this metal onto hydroxyapatite under open circuit conditions. After optimization of the experimental and voltammetric conditions, the best voltammetric responses-current intensity and voltammetric profile were obtained in 0.2 mol L?1 KNO3 with: 30 min accumulation time, 5 mV pulse amplitude and 1 mV s?1 scan rate. The observed detection (DL, 3σ) and quantification (DL, 10σ) limits in pure water were 2.01 × 10?8 and 6.7 × 10?7 mol L?1, respectively. The reproducibility of the proposed method was determined from five different measurements in a solution containing 2.2 × 10?6 mol L?1 lead(II) with a coefficients of variation of 2.08%.The electrochemical of hydroxyapatite at platinum surfaces was characterized, after calcinations 900 °C, by X-ray diffraction, infrared spectroscopy, chemical and electrochemical analysis.  相似文献   

9.
Transition-metal doped double-perovskite structure oxides GdBaCo2/3Fe2/3Ni2/3O5+δ (FN-GBCO), GdBaCo2/3Fe2/3Cu2/3O5+δ (FC-GBCO), GdBaCoCuO5+δ (C-GBCO) and pristine GdBaCo2O5+δ (GBCO) were synthesized via a citrate combustion method. The thermal-expansion coefficient (TEC) and electrochemical performance of the oxides were investigated as potential cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The TEC exhibited by the FC-GBCO cathode up to 900 °C is 14.6 × 10?6 °C?1, which is lower than the value of GBCO (19.9 × 10?6 °C?1). Area specific resistances (ASR) of 0.165 Ω cm2 at 700 °C and 0.048 Ω cm2 at 750 °C were achieved for the FC-GBCO cathode on a Ce0.9Gd0.1O1.95 (CGO) electrolyte. An electrolyte supported (300 μm thick) single-cell configuration of FC-GBCO/CGO/Ni-CGO attained a maximum power density of 435 mW cm?2 at 700 °C. The unique composition of GBCO co-doped with Fe and Cu ions in the Co sites exhibited reduced TEC and enhancement of electrochemical performance and good chemical compatibility with CGO, and this composition is proving to be a potential cathode for IT-SOFCs.  相似文献   

10.
A new noncovalent approach for the dissolution of MWNTs in water by azocarmine B (ACB) is reported. Through a simple electro-polymerization procedure, a novel electrochemical NO sensor based on water-soluble MWNTs and polyazocarmine B (PACB) nanofilm electrode was prepared, which showed excellent electrocatalytic activity towards the oxidation of nitric oxide (NO). The oxidation current linearly increased with the nitric oxide concentration in the range of 2.2 × 10−7–1.2 × 10−4 mol L−1 with a low detection limit of 2.8 × 10−8 mol L−1. The sensor has the merit of good stability, reproducibility, high sensitivity and selectivity, and it can be used to monitor NO released from rat liver cells effectively.  相似文献   

11.
Fibriform polyaniline/nano-TiO2 composite is prepared by one-step in situ oxidation polymerization of aniline in the presence of nano-TiO2 particles, which contains 80% conducting polyaniline by mass, with a conductivity of 2.45 S/cm at 25 °C. Its maximum specific capacitance is 330 F g?1 at a constant current density of 1.5 A g?1, and can be subjected to charge/discharge over 10,000 cycles in the voltage range of 0.05–0.55 V.  相似文献   

12.
A sensitive electrochemical procedure based on reduction of secnidazole (I), tinidazole (II) and ornidazole (III) at a glassy carbon electrode (GCE) was introduced. A study of the variation of the peak current with solution variables such as pH, ionic strength, concentration of drugs, possible interference, and instrumental variables such as scan rate, pulse amplitude, preconcentration time, accumulation potential, has resulted in the optimization of the reduction signal for analytical purposes. Linear calibration plots were obtained over the concentration ranges of 50–800, 50–750 μg mL?1 for I, and both (II, III) respectively, in Britton–Robinson buffer of pH 7. The relative standard deviations of five replicate measurements of 1.0 and 10.0 μg mL?1 of I, II and III concentrations were 4.7%, 4.9% and 5.3%, and 2.2%, 2.6% and 2.8%, respectively. The limits of detection (LOD) for I, II and III were found to be 2 × 10?10, 3 × 10?10 and 2.5 × 10?10 mol L?1 and limits of quantification (LOQ) for I, II and III were found to be 4.0 × 10?8, 1.2 × 10?8 and 4.4 × 10?8 mol L?1, respectively. The optimal conditions were: Eacc = ?0.9 V, tacc = 30 s, scan rate = 20 mV s?1, pulse-height = 90 mV and Britton–Robinson buffer of pH 7. The method was applied for the determination of the cited drugs both in raw materials and in pharmaceutical preparations with satisfactory results and compared with the official reference method. Complete validation of the proposed method was also done.  相似文献   

13.
NADH oxidation catalysts are extremely important in the field of electrochemical biosensors and enzymatic biofuel cells. Based on the growing diazonium chemistry, we synthesized the diazonium salt of the well-known NADH mediator toluidine blue O. The electrochemical reduction of the diazonium moiety by cyclic voltammetry onto a screen-printed electrode leads to an electrocatalyst suitable for the oxidation of NADH. The amperometric response for its oxidation shows a maximal current of 1.2 μA ([NADH] = 100 μM). Based on electrochemical measurements, the surface coverage is found to be 3.78 × 10? 11 mol cm? 2 and the heterogeneous standard rate constant kh is 1.21 ± 0.16 s? 1. The sensitive layer for the oxidation of NADH is improved by electrografting the diazonium salt with a potentiostatic method. Both the surface coverage and the heterogeneous standard rate constant kh are improved and found to be 6.08 ± 0.63 × 10? 11 mol cm? 2 and ~ 5.02 s? 1, respectively. The amperometric response is also improved by an 8 fold factor, reaching 9.87 μA ([NADH] = 120 μM). These remarkably high values for screen-printed electrodes are comparable to glassy carbon electrodes making this method suitable for low-cost bioelectronical devices.  相似文献   

14.
Silver nanoparticle coated multi-walled carbon nanotubes (Ag/MWCNT) were prepared and used to fabricate a modified electrode. The Ag/MWCNT composites were observed by a transmission electron microscope (TEM), and the electrochemical properties of the Ag/MWCNT composite modified glassy carbon electrode were characterized by electrochemical measurements. The results showed that these composites had a favorable catalytic ability for the reduction of trichloroacetic acid (TCAA). Square wave voltammetric (SWV) technique was applied to detect TCAA. Under optimum conditions, the voltammetric determination of TCAA was performed with a linear range of 5.0 × 10? 6–1.2 × 10? 4 mol L? 1 and a detection limit of 1.9 × 10? 6 mol L? 1 (S/N = 3).  相似文献   

15.
A novel sensor based on a screen-printed electrode (SPE) modified with a stable dispersion of commercially available carbon black (CB) N220 was developed. This probe showed significantly enhanced electrochemical activity relative to a bare SPE when tested with ferricyanide, epinephrine, norepinephrine, benzoquinone and NADH. When challenged in amperometric batch mode with NADH, the response was stable and revealed a linear dependence up to 2·10?4 mol L?1 with a detection limit of 3·10?7 mol L?1. The analytical performance, coupled with the low cost of the CB nanomaterial, suggests that this sensor holds promise for electrochemical applications.  相似文献   

16.
N,N′-phenylenebis(salicylideaminato) (L) has been used to detect trace amounts of zinc ion in acetonitrile–water solution by fluorescence spectroscopy. The fluorescent probe undergoes fluorescent emission intensity enhancement upon binding to zinc ions in MeCN/H2O (1:1, v/v) solution. The fluorescence enhancement of L is attributed to the 1:1 complex formation between L and Zn(II), which has been utilized as the basis for selective detection of Zn(II). The linear response range for Zn(II) covers a concentration range of 1.6 × 10?7 to 1.0 × 10?5 mol/L, and the detection limit is 1.5 × 10?7 mol/L. The fluorescent probe exhibits high selectivity over other common metal ions, and the proposed fluorescent sensor was applied to determine zinc in water samples and waste water.  相似文献   

17.
A flow electrochemical sensor for trace analysis of lead, using TETRAM-modified graphite felt electrode is reported here. TETRAM ligands are covalently immobilized on the graphite felt by chemical reactions on amino acid linkers, previously attached to the electrode by an electrochemical process. The detection is performed in two steps: the preconcentration of Pb2+ ions by complexation with immobilized TETRAM and the analysis by linear sweep stripping voltammetry. A calibration curve typical of at least two equilibrium processes is obtained. A limit of detection of 2.5 × 10?8 mol L?1 is reached for a total analysis time of 35 min. Interestingly, the flow sensor shows a good selectivity toward lead in presence of Cu2+, Cd2+, Ni2+, Zn2+ and Co2+ ions. This new sensor exhibits improved sensitivity and selectivity compared to the previously reported sensor using cyclam-modified electrode. It is stable after three uses, using strong acidic medium for the regeneration step.  相似文献   

18.
The development of UV and fluorescence spectrophotometric methods for the quantitative determination of alprazolam in dosage forms using As(III)?SDS system. The two simple and sensitive, spectrophotometric and spectrofluorimetric methods were developed for the determination of alprazolam (ALP) in tablets. These methods are based on formation of ALP?As(III) complex in the presence of SDS. The UV-spectrum of 30% methanolic solution of ALP (5 × 10?5 M) at pH 6.5 (Mclivaine buffer) was run between 200 and 380 nm. The absorption spectrum of ALP exhibits two peaks with a λmax. at 255 nm and a weak band at 325 nm. When the spectra of the drug were run at varying pH in the region 200–380 nm, one isosbestic point at 290 nm was observed, which indicated the presence of two ionic conditions in solution. The complex exhibited an absorption maximum at 265 nm and emission peak at 520 nm with respect to the excitation wavelength of 325 nm. The spectrophotometric method was found to be linear in 8.0–17.0 μg ml?1 range with detection limit of 13.520 μg ml?1, while 0.05–9.5 μg ml?1 range was with detection limit of 1.048 × 10?2 μg ml?1 by spectrofluorimetric method. The mean percentage recovery of the added quantity was found to be 99.54 (spectrophotometric method) and 100.22 (spectrofluorimetric method) and the %RSD are lower than 0.478 and 0.296 determined spectrophotomerically and spectrofluorimtrically, respectively. This indicates that the proposed method is accurate. The apparent ionization constant of ALP was found to be 9.29. The spectra, experimental conditions were set followed by determination stoichiometry, stability constant and thermodynamic parameters of the As(III), Co(II), Ni(II), and Zn(II) complexes with ALP at pH 6.5. The proposed methods have been successfully applied to the assay of ALP in tablets and the results were statistically evaluated.  相似文献   

19.
In this communication, a hydrogen peroxide (H2O2) sensor based on self-assembled Prussian Blue (PB) modified electrode was reported. Thin film of PB was deposited on the electrode by self-assembly process including multiple sequential adsorption of ferric ions and hexacyanoferrate ions. The as-prepared PB modified electrode displayed sufficient stability for practical sensing application. At an applied potential of ?0.05 V vs. Ag/AgCl (sat. KCl), PB modified electrode with 30 layers exhibited a linear dependence on H2O2 concentration in the range of 1 × 10?6–4 × 10?4 M (r = 0.9998) with a sensitivity of 625 mA M?1 cm?2. It was found that the sensitivity of H2O2 sensors could be well controlled by adjusting the number of deposition cycles for PB preparation. This work demonstrates the feasibility of self-assembled PB modified electrode in sensing application, and provides an effective approach to control the sensitivity of PB-based amperometric biosensors.  相似文献   

20.
A simple, sensitive and accurate spectrophotometric method has been described for the assay of diphenhydramine hydrochloride (DPH) in raw material and in biological samples. The method is based on extraction of DPH into dichloromethane as ion-pair complexes with patent blue (PB), eriochrome black T (EBT), methyl orange (MO) and bromocresol purple (BCP) in acidic medium. The coloured species exhibited absorption maxima at 632, 514, 428 and 414 nm for PB, EBT, MO and BCP, with molar absorptivity values of 1.32 × 105, 2.36 × 104, 3.68 × 104 and 3.07 × 104 l mol?1 cm?1, respectively. The reaction conditions were optimized to obtain the maximum colour intensity. Beer’s law was obeyed with a good correlation coefficient (0.9982–0.9993) in the concentration ranges 0.5–3, 2.0–16, 2.0–10 and 1.0–10 μg ml?1 for PB, EBT, MO and BCP methods, respectively. The composition ratio of the ion-association complexes was found to be 1:1 in all cases as established by Job’s method. The conditional stability constant (Kf) and the free energy changes (ΔG°) were determined for all complexes formed. The proposed method was successfully applied for the determination of DPH in tablets and human urine with good accuracy and precision. Statistical comparison of the results with those obtained by the official method showed good agreement and indicated no significant difference in accuracy and precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号