首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Alternating adsorption of polyanions and polycations on porous supports provides a convenient way to prepare ion-selective nanofiltration membranes. This work examines optimization of ultrathin, multilayer polyelectrolyte films for monovalent/divalent cation separations relevant to water softening. Membranes composed of five bilayers of poly(styrene sulfonate)/poly(allylamine hydrochloride) (PSS/PAH) on porous alumina supports allow a solution flux of 0.85 m3/(m2 day) at 4.8 bar, and exhibit 95% rejection of MgCl2 along with a Na+/Mg2+ selectivity of 22. Similar results were obtained in Na+/Ca2+ separations. PSS/poly(diallyl-dimethylammonium chloride) (PDADMAC) films permit higher fluxes than PSS/PAH systems due to the higher swelling of films containing PDADMAC, but the Mg2+ rejection by PSS/PDADMAC membranes is less than 45%. However, capping PSS/PDADMAC films with a bilayer of PSS/PAH yields Mg2+ rejections and Na+/Mg2+ selectivities that are typical of pure PSS/PAH membranes. Separation performance can be optimized through control over deposition conditions (pH and supporting electrolyte concentration) and the charge of the outer layer since Donnan exclusion is a major factor in monovalent/divalent cation selectivity. Streaming potential measurements demonstrate that the magnitude of positive surface charge increases with increasing concentrations of Mg2+ in solution or when the outer polycation layer is deposited from a solution of high ionic strength.  相似文献   

2.
This paper compares the influence of the molecular weight of polylelectrolytes forming polyelectrolyte multilayers (PEM) on wood fibers on adhesion and paper strength. Sheets were made from fibers treated with poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA) of molecular mass 70,000 and 240,000, respectively, and of poly(dimethyldiallylammonium chloride) (PDADMAC)/poly(styrene sulfonate) (PSS) of molecular mass 30,000 and 80,000, respectively. The results were compared to what has recently been reported for PEM formation on fibers using a low-molecular-mass combination of PAH and PAA and a high-molecular-mass combination of PDADMAC/PSS. There was a less significant improvement in the case of the low-molecular-mass PDADMAC/PSS and the high-molecular-mass PAH/PAA. The adsorbed amounts of PAH and PDADMAC were also determined, showing a lower adsorbed amount of the low-molecular-mass PAH than of the high-molecular-mass PDADMAC. The amount of low-molecular-mass PDADMAC was similar to that found for high-molecular-mass PDADMAC/PSS. Individual fibers were partly treated and studied, showing a less significant decrease in wettability with low-molecular-mass PDADMAC/PSS than with the high-molecular-mass combination. The effect of the molecular weight on the adhesion was discussed in terms of the structure and wettability of the PEMs.  相似文献   

3.
We report the use of a variety of polyelectrolyte multilayers (PEMs) as selective skins in composite membranes for nanofiltration (NF) and diffusion dialysis. Deposition of PEMs occurs through simple alternating adsorption of polycations and polyanions, and separations can be optimized by varying the constituent polyelectrolytes as well as deposition conditions. In general, the use of polycations and polyanions with lower charge densities allows separation of larger analytes. Depending on the polyelectrolytes employed, PEM membranes can remove salt from sugar solutions, separate proteins, or allow size-selective passage of specific sugars. Additionally, because of the minimal thickness of PEMs, NF pure water fluxes through these membranes typically range from 1.5 to 3 m3/(m2 day) at 4.8 bar. Specifically, to separate sugars, we employed poly(styrene sulfonate) (PSS)/poly(diallyldimethylammonium chloride) (PDADMAC) films, which allow 42% passage of glucose along with a 98% rejection of raffinose and a pure water flux of 2.4 m3/(m2 day). PSS/PDADMAC membranes are also capable of separating NaCl and sucrose (selectivity of approximately 10), while high-flux chitosan/hyaluronic acid membranes [pure water flux of 5 m3/(m2 day) at 4.8 bar] may prove useful in protein separations.  相似文献   

4.
Nanofiltration (NF) is an attractive technique for reducing F- concentrations to acceptable levels in drinking water, but commercial NF membranes such as NF 270 and NF 90 show minimal Cl-/F- selectivity. In contrast, simple layer-by-layer deposition of 4.5-bilayer poly(styrene sulfonate) (PSS)/poly(diallyldimethylammonium chloride) (PDADMAC) films on porous alumina supports yields NF membranes that exhibit Cl-/F- and Br-/F- selectivities>3 along with solution fluxes that are >3-fold higher than those of the commercial membranes. Fluoride rejection by (PSS/PDADMAC)4PSS membranes, which is >70%, is independent of pressure over a range of 3.6 to 6.0 bar, suggesting that the primary transport mechanism in these films is convection. Moreover, the fact that Br-/F- selectivity is 12% higher than Cl-/F- selectivity suggests that discrimination among the monovalent ions is based on size (Stokes radius). Chloride/fluoride selectivities are essentially constant over Cl-/F- feed ratios from 1 to 60, so these separations will be viable over a range of conditions. Interestingly, PSS/protonated poly(allylamine) films show little Cl-/F- selectivity, and the selectivity of PSS/PDADMAC membranes is a strong function of the number of deposited layers, indicating that NF properties are very sensitive to film structure.  相似文献   

5.
This work illustrates the potential use of PEI/PSS bilayers assembled via layer by layer (lbl) method on a nylon microfiltration membrane for the recovery of phosphate from water in the presence of chloride under ultrafiltration conditions. A total of nine bilayers were used for the selective recovery of phosphate. Bilayers were constructed from polyelectrolyte solutions of varying ionic strength (0-1 M of NaCl). The selected pH for deposition of PEI (5.9) and the presence of supporting salt in the polyelectrolyte solution is expected to provide membranes with high permeability and high charge density. This particular combination of bilayers yielded high flux membranes that allowed selective removal of H(2)PO(4)(-) in the presence of Cl(-) at low pressure (0.28 bar). The magnitude of negative solute rejection of chloride showed increasing trend with the number of bilayer for a particular salt concentration. Whereas the increase in magnitude with ionic strength is so high (-6.18 to -269.17 at 0.5 M NaCl for 9 bl) that gave the best observed Cl(-)/H(2)PO(4)(-) selectivity (310.23, flux 13.53 m(3)/m(2)-day). To the best of our knowledge, this is the first time a multilayer polyelectrolyte system with such a high selectivity and rejection for H(2)PO(4)(-) is reported. The solution flux decreased with the number of bilayers and ionic strength. The rejection of phosphate was dependent on feed pH, concentration of deposited polyelectrolyte solution, and composition of membrane support.  相似文献   

6.
Nanofiltration (NF) membrane processes are attractive to remove multivalent ions. As ion retention in NF membranes is determined by both size and charge exclusion, negatively charged membranes are required to reject negatively charged ions. Layer-by-layer assembly of alternating polycation (PC) and polyanion layers on top of a support is a versatile method to produce membranes. Especially the polyelectrolyte (PE) couple polydiallyldimethylammoniumchloride and poly(sodium-4-styrenesulfonate) (PDADMAC/PSS) is extensively investigated. This PE couple cannot form highly negatively charged membrane surfaces, due to interdiffusion and charge overcompensation of PDADMAC into the PSS layers, which limits the operational window to tailor membrane properties. We propose the use of asymmetric layer formation and show how combining two charge densities of one PC can produce negatively charged NF membranes. Starting from hollow fiber ultrafiltration supports coated with base layers of PDADMAC/PSS, they are coated with PDADMAC/PSS or poly(acrylamide-co-diallyldimethylammoniumchloride), P(AM-co-DADMAC)/PSS layers. P(AM-co-DADMAC) has a charge density of only 32% compared to 100% for PDADMAC. The particular novel membranes coated with P(AM-co-DADMAC) have a highly negatively charged surface and high permeabilities (7–19 L/[m2hbar]), with high retentions for Na2SO4 of up to 95%. These values position the developed membranes in the top range compared to commercial and other layer-by-layer membranes.  相似文献   

7.
Temperature- and pH-sensitive poly(N-isopropylacrylamide)?Cco-acrylic acid (pNIPAm-co-AAc) microgels were deposited on glass substrates coated with polyelectrolyte multilayers composed of the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(sodium 4-styrenesulfonate) (PSS). The microgel density and structure of the resultant films were investigated as a function of: (1) the number of PAH/PSS layers (layer thickness); (2) the charge on the outer layer of the polyelectrolyte multilayer film; and (3) the pH of microgel deposition solution. The resultant films were studied by differential interference contrast optical microscopy, atomic force microscopy, and scanning electron microscopy. It was found that the coverage of the microgels on the surface was a complex function of the pH of the deposition solution, the charge on the outer layer of the polyelectrolyte thin film and the PAH/PSS layer thickness; although it appears that microgel charge plays the biggest role in determining the resultant surface coverage.  相似文献   

8.
Polyelectrolyte multilayer films adsorbed on gold surfaces were studied by combined ellipsometric and electrochemical methods. Multilayers were composed of “synthetic” (poly(4-styrenesulfonic acid) ammonium salt (PSS) and poly(allylamine hydrochloride) (PAH) (PSS/PAH)) and “semi-natural” (carboxymethyl cellulose (CMC) and chitosan (CHI) (CMC/CHI)) polyelectrolytes. It was found that only PSS/PAH Layer-by-Layer (LbL) assembled structures result in dense surface confined films that limit permeability of small molecules, such as ferri-/ferrocyanide. The PSS/PAH assemblies can be envisaged as films with pinholes, through which small molecules diffuse. During the LbL deposition process of these films a number of pinholes quickly decay. A representative pinhole diameter was found to be approximately 20 μm, which determines the diffusion of small molecules through LbL films, and yet remains constant when the film consists of a few LbL assembled polyelectrolyte bilayers. CMC/CHI LbL assemblies at gold electrode surfaces give very low density films, which do not limit the diffusion of ferri-/ferrocyanide between the surface of the electrode and the solution.  相似文献   

9.
One of the critical issues for membrane application in wastewater treatment is membrane fouling majorly caused by dissolved organic matters. The aim of the present study was to lower membrane fouling by adsorption of polyelectrolytes. In the paper, the feasibility of coating for diverse ultrafiltration membrane materials was investigated and their filtration performance was compared to that of the unmodified ones. Different ultrafiltration flat-sheet membranes, polyvinylidene fluoride, polyethersulfone, polysulfone and cellulose acetate were coated by branched poly(ethyleneimine) (PEI), poly(diallyldimethylammonium chloride) (PDADMAC) and poly(allylamine chloride) (PAH) and filtrated with sludge supernatant. Short term experiments showed a substantial drop of permeability: almost 40 % for PEI, 23 % for PDADMAC, and about 19 % for PAH coating. This deterioration resulted from the additional resistance of the deposited layers. On the other hand, coating led to lower fouling rates during filtration. In the stable state of filtration, coated membranes showed higher permeabilities compared to the uncoated ones. For the polyethersulfone membrane, the average permeability enhancement was 11 %. For polysulfone and cellulose acetate membranes, the permeability improved by 28 % and 15 % respectively. For polyvinylidene fluoride membranes only coating with PDADMAC enhanced the permeability, by 13 %. PEI and PAH modified membranes featured lower permeabilities than the uncoated ones. Presented at the 35th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 26–30 May 2008.  相似文献   

10.
The functionalization of an organic polyethersulfone membrane (PES) was performed by alternating deposition of poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrene sulfonate) (PSS), leading to the formation of a polyelectrolyte multilayer film (PEM). The resulting assembly was characterized by tangential streaming potential measurements to determine the charge of the modified membranes as a function of the polyelectrolyte solution concentration and as a function of the immersion time of the membrane in the polyelectrolyte solutions. Then, the modified membranes were used to perform the ultrafiltration of aqueous solutions containing copper(II) ions. Different operating conditions were tested including: polyelectrolyte concentration, polyelectrolyte nature, thickness of the PEM film or pH of the Cu(2+) solutions. These filtration experiments demonstrated that it was possible to obtain a satisfactory retention of the copper ions (88%), thus proving that this type of assembly can be useful for the removal of copper ions from contaminated aqueous solutions.  相似文献   

11.
Polyelectrolyte multilayer capsules consisting of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(styrene sulfonate) (PSS) were used as a model system to study the temperature-dependent behavior of polyelectrolyte multilayer films in aqueous media. Shells terminated with PSS shrink upon heating, whereas PDADMAC-terminated ones swell, independent of the nature of the first layer, as measured by means of confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Elemental analysis shows that the initial exponential layer growth of the film leads to a nearly neutral overall charge in the first case or a high positive excess charge in the latter. Depending on this overall charge either surface tension, due to an unfavorable polymer-solvent interaction, or electrostatics dominates, resulting in a shrinkage or expansion of capsules, respectively. Thus, it is possible to swell temperature-shrunk capsules by coating them with an additional PDADMAC layer. Micro-DSC measurements prove that polyelectrolyte multilayers undergo a glass transition in water at which the wall material softens, allowing the rearrangements to occur. It is found that the thermal history has an influence on the temperature behavior of capsules, especially on those ones terminated with PDADMAC. Also, the molecular weight of the polyelectrolytes affects the rearrangement of capsules. The lower the molecular weight and thus the smaller the entanglement of chains, the easier polyelectrolytes can rearrange.  相似文献   

12.
Attenuated total internal reflectance Fourier transform infrared, ATR-FTIR, spectroscopy was used to compare the water uptake and doping within polyelectrolyte multilayers made from poly(styrene sulfonate), PSS, and a polycation, either poly(allylamine hydrochloride), PAH, or poly(diallyldimethylammonium chloride), PDADMAC. Unlike PDADMA/PSS multilayers, whose water content depended on the solution ionic strength, PAH/PSS multilayers were resistant to doping by NaCl to a concentration of 1.2 M. Using (infrared active) perchlorate salt, the fraction of residual counterions in PDADMA/PSS and PAH/PSS was determined to be 3% and 6%, respectively. The free energy of association between the polymer segments, in the presence of NaClO4, was about 5 kJ mol-1 and -10 kJ mol-1, respectively, for PDADMA/PSS and PAH/PSS, indicating the relatively strong association between the polymer segments in the latter relative to the former. Varying the pH of the solution in contact with the PAH/PSS multilayer revealed a transition to a highly swollen state, interpreted to signal protonation of PAH under much more basic conditions than the pKa of the solution polymer. The increase in the multilayer pKa suggested an interaction energy for PAH/PSS in NaCl of ca. 16 kJ mol-1.  相似文献   

13.
In recent years, the layer-by-layer (LBL) self-assembly of polyelectrolyte has attracted much attention for the preparation of nanofiltration (NF) membranes. However, most researchers focused on the homopolymers, few studied on the copolymers for the preparation of NF membranes. In the present work, a series of nanofiltration membranes were prepared by dynamic self-assembly of a copolymer polyelectrolyte containing both weakly and strongly ionized groups, poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA), with poly (allylamine hydrochloride) (PAH) and poly (styrenesulfonic acid sodium salt) (PSS) on the modified polyacrylonitrile (PAN) ultra-filtration membranes. The effects of substrate, deposition pH, SS/MA ratio in PSSMA, concentration of the PSSMA and bilayer number on the properties of the NF membranes were investigated. The results indicated that the performances of the NF membranes prepared by dynamic self-assembly process were superior to those prepared by the static self-assembly process. The membranes terminated with PSSMA were negatively charged. Due to the changes of charge density and conformation of PSSMA in different pH conditions, the [PAH/PSS]1PAH/PSSMA membrane prepared at pH 2.5 showed higher Na2SO4 rejection and larger flux than those of the membrane prepared at pH 5.7. The NF membrane [PAH/PSS]1PAH/PSSMA composed of only two bilayers exhibited 91.4% Na2SO4 rejection and allowed solution flux of 28.6 L/m2 h at 0.2 MPa. The solution flux increased to 106.6 L/m2 h at 0.8 MPa, meanwhile, no obvious decrease in Na2SO4 rejection was observed.  相似文献   

14.
Multilayer thin films formed by sequential deposition of oppositely charged polypeptides on a charged surface are known from previous studies to comprise a mixture of types of secondary structure. Here, study of the perturbation of polypeptide film structure by deposition of poly(allylamine hydrochloride) (PAH) and poly(styrenesulfonate) (PSS) on the film surface has revealed differences in behavior attributable to physical properties of the peptides. The methods of analysis were circular dichroism spectroscopy (CD), ultraviolet spectroscopy (UVS), and quartz crystal microbalance (QCM). Films made of poly(L-lysine) (PLL) and poly(L-glutamic acid) (PLGA) with an average charge per monomer of about 1 were substantially more susceptible to perturbation of structure than films made of designed polypeptides with an average charge per monomer of about 0.5, despite preparation under identical conditions. PLL-PLGA films showed loss or gain of material and change in secondary structure content on perturbation, whether made of high molecular mass (ca. 90 kDa) or low molecular mass (ca. 14 kDa) polymers. By contrast, films made of very low molecular mass (ca. 3.5 kDa) designed polypeptides showed little change in secondary structure content. The data suggest that the penetrability of PSS or PAH into a film and therefore film density can depend substantially on the polypeptides of which it is made and the character of intermolecular interactions.  相似文献   

15.
The effects of treating polyethylene (PE) film by consecutive adsorption of poly(diallyldimethylammonium chloride), polyDADMAC, followed by poly(sodium p-styrene sulfonate), PSS, on the deposition rate of aqueous polystyrene latex were investigated with the impinging jet technique. Rapid initial deposition occurred on films treated with polyDADMAC; however, significant blocking occurred. Deposition decreased with the concentration of polyDADMAC used to treat the PE film.

Film treatment with polyDADMAC followed by PSS to give an adsorbed polyelectrolyte complex gave decreased deposition rates. The molecular weight of PSS was not a significant variable in the range 5400–1 200 000. It was concluded that PSS increased the electrostatic repulsion between the PE film and the latex particles.  相似文献   


16.
Growth processes of nanocomposite layers obtained by polyelectrolytes, poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC), self-assembled on silicon surface using layer-by-layer (LbL) technique were investigated, and theoretical and experimental data are herein reported. Complementary microstructural and compositional analyses techniques (scanning electron microscopy, ellipsometry, X-ray reflectivity, zeta (ξ) potential measurements and attenuated total reflection infrared spectroscopy) were used for deep characterization of the multilayer structure formation. Electrophoretic zeta (ξ) potential measurements indicated that the surface charge was either positive or negative, depending on the polyelectrolyte used (PDADMAC or PSS). ATR-IR spectra confirmed the successfully silanization process and then, the building up of the nanocomposite layer. Morphological investigation and X-ray reflectivity demonstrated the growth process and cross-section size of the bilayers. Ellipsometric measurements were in very good agreement with SEM and XRR, showing once again the successful deposition of polyelectrolyte multilayers.   相似文献   

17.
The polarity of polyelectrolyte (PE) multilayer films is investigated with pyrene as a polarity-sensitive probe. Multilayer films of poly(styrene sulfonate) (PSS) and various polycations were prepared by the layer-by-layer self-assembly technique. Pyrene (PY) molecules were inserted into the films by exposing the multilayers to pyrene solutions. By this method a homogeneous distribution of pyrene molecules at low concentration within the film was obtained. The ratio of the fluorescence intensities of the first (I) to the third (III) vibronic band (Py-value) of the pyrene emission spectrum is employed here to determine the polarity of the PE films. PSS and poly(allylamine hydrochloride) (PAH) multilayer films yielded a pyrene value close to the solvent polarity of acetone, while multilayers of PSS and poly(diallyldimethylammonium chloride) (PDADMAC) displayed a value higher than the one corresponding to water. The pyrene values of the polyelectrolyte films were independent from the solvent employed for probe dissolving. Although no direct relationship between solvent polarity and dielectric constant (epsilon) is available, an estimate of the static dielectric constant of the films can be provided by comparing the Py-values of the films with those of various solvents. Changes in the humidity conditions of the film environment in a closed cell did not affect the film polarity. However, a drastic and irreversible reduction of polarity could be induced by actively drying the samples by a nitrogen flow.  相似文献   

18.
The quartz crystal microbalance with dissipation technique (QCM‐D) and atomic force microscopy (AFM) have been employed to study the interaction of N‐tetradecyl trimethyl ammonium bromide (TdTmAB) with polyelectrolyte multilayers containing poly(sodium 4‐styrene sulfonate) (PSS) as the polyanion and either poly(allylamine hydrochloride) (PAH) or poly(diallyl dimethyl ammonium chloride) (PDADMAC) as the polycations. The multilayers were exposed to aqueous solutions of TdTmAB. This resulted in a selective removal of PDADMAC PSS layers while layers with PAH as polycation remained stable. It is suggested that PDADMAC/PSS multilayers can be employed as strippable protecting layers.

  相似文献   


19.
Liquid cell atomic force microscopy (LC-AFM) is used to image self-assembled polyelectrolyte films eliminating any drying effects on the film structure. Weak/weak and strong/weak polyelectrolyte films are formed by the alternated deposition of poly(acrylic acid) [PAA]/poly(allylamine hydrochloride) [PAH], and poly(sodium 4-styrene sulfonate) [PSS]/PAH, respectively, forming a granular surface structure. Number and area of grains (GN, GA) are used to characterize the surface of these films during their build up process. We show that hydrophilic PAA increases GA and decreases GN, while these parameters follow an opposite behavior with PSS. In both cases, GA and GN always have a simple inverse relationship, and then grain surface coverage (GS=GNGA) is nearly constant and independent of polyelectrolyte nature and the substrates used here, but also in the published data as well. The drying of the weak/weak film was also imaged after natural and forced solvent evaporation, and the surface structure is strongly affected, although the GS values keep roughly the same value found for wet films. The set of these results indicates that GS may be considered as a constant parameter during the build-up for the self-nascent assembled polyelectrolytes. The granular structure is still maintained after glucose oxidase adsorption on these films with comparable GS values.  相似文献   

20.
The electrophoretic mobility and temperature-dependent particle size of poly(N-isopropylacrylamide) (PNiPAM) microgels after alternating adsorption of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium 4-styrenesulfonate) (PSS) have been determined. First a PNiPAM-co-acrylic acid (AAc) shell was added to the PNiPAM microgel, then PDADMAC and PSS were adsorbed alternately. The studies of the electrophoretic mobility revealed charge reversal when a polyelectrolyte (PE) layer was adsorbed. Particle size measurements revealed a strong influence of polyelectrolyte adsorption on the temperature-dependent particle swelling. The strong influence of the adsorbed polyelectrolyte on the particle size is in contrast to polyelectrolyte multilayer adsorption on rigid particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号