首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

This study describes a new magnetic solid-phase extraction (MSPE) technique based on Fe3O4/graphene oxide-soluble eggshell membrane protein (Fe3O4/GO-SEP) for accurate measurement of malachite green (MG) residue in various water samples residues by UV-Vis spectroscopy. The morphology of the prepared adsorbent has been studied by scanning electron microscopy and atomic force microscopy in details. Parameters affecting the MSPE were optimised and determined with UV-Vis spectrophotometry thoroughly. Under the optimised extraction circumstances, the introduced method represented a wide linearity over the concentration of 0.5–250 ng mL?1, a high enrichment factor of 83.3 and low detection limit of 0.2 ng mL?1. The prepared Fe3O4/GO-SEP was successfully used for preconcentration and determination of MG in river and fish farming water samples with suitable precision and accuracy.  相似文献   

2.
This work describes a magnetic Fe3O4/graphene oxide (GO)-based solid-phase extraction (MSPE) technique for high performance liquid chromatography (HPLC) detection of malachite green (MG) and crystal violet (CV) in environmental water samples. Fe3O4/ GO magnetic nanoparticles were synthesised by a chemical co-precipitation method and characterised by scanning electron micrograph, transmission electron microscope, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and surface area analyser. The prepared Fe3O4/GO magnetic nanoparticles were used as the adsorbents of MSPE for MG and CV. By coupling with HPLC, a sensitive and cost-effective method for simultaneous determination of MG and CV was developed. The important parameters including the amount of Fe3O4/GO, pH of the sample solution, extraction time, salt effect, the type and volume of desorption solvent were investigated in detail. Under optimised conditions, the calibration curves were linear in the concentration range of 0.5–200 μg L?1, and the limits of detection were 0.091 and 0.12 μg L?1 for MG and CV, respectively. Finally, the established MSPE-HPLC method was successfully applied to determine MG and CV in environmental water samples with the recoveries ranging from 91.5% to116.7%.  相似文献   

3.
A new solid-phase extraction coupled with magnetic carrier technology was developed for extraction of bisphenol A (BPA) and diethylstilbestrol (DES) from water samples. The SPE sorbents, functionalized magnetic nanoparticles (Fe3O4@SiO2/β-CD, core/shell), were synthesized in a two-stage system. The material was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and a vibrating sample magnetometer. SPE extraction parameters, such as volume and pH of sample, adsorption time, and desorption conditions were optimized. Under selected conditions: 250 mL of water sample, 0.1 g of sorbents and elution with methanol (3 mL with 1% acetic acid), the extraction was completed in 25 min. SPE followed by HPLC was employed to determine BPA and DES in environmental samples. The developed method provided spiked recoveries of 80–105%, relative standard deviations of less than 7%, and LOD of BPA (20.0 ng/L) and DES (23.0 ng/L), respectively. The proposed method offered easy preparation of sorbents, rapid analysis, high enrichment yields, and reliable quantitative assay.  相似文献   

4.
Novel poly(deep eutectic solvent) grafted silica-coated magnetic microspheres (Fe3O4@SiO2-MPS@PDES) were prepared by polymerization of choline chloride-itaconic acid (ChCl-IA) and γ-MPS-modified magnetic silica composites, and were characterized by vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA) and transmission electron microscope (TEM). Then the synthetic Fe3O4@SiO2-MPS@PDES microspheres were applied for the magnetic solid-phase extraction (MSPE) of trypsin for the first time. After extraction, the concentration of trypsin in the supernatant was determined by a UV–vis spectrophotometer. Single factor experiments were carried out to investigate the effects of the extraction process, including the concentration of trypsin, the ionic strength, the pH value, the extraction time and the temperature. Experimental results showed the extraction capacity could reach up to 287.5 mg/g under optimized conditions. In comparison with Fe3O4@SiO2-MPS, Fe3O4@SiO2-MPS@PDES displayed higher extraction capacity and selectivity for trypsin. According to the regeneration studies, Fe3O4@SiO2-MPS@PDES microspheres can be recycled six times without significant loss of its extraction capacity, and retained a high extraction capacity of 233 mg/g after eight cycles. Besides, the activity studies also demonstrated that the activity of the extracted trypsin was well retained. Furthermore, the analysis of real sample revealed that the prepared magnetic microspheres can be used to purify trypsin in crude bovine pancreas extract. These results highlight the potential of the proposed Fe3O4@SiO2-MPS@PDES-MSPE method in separation of biomolecules.  相似文献   

5.
The sulfhydryl-functionalised core-shell Fe3O4@SiO2 magnetic nanoparticles (Fe3O4@SiO2–RSH MNPs)-based dispersive solid-phase extraction method was developed. The goal of this method is the extraction of mercury species from natural water samples. An interesting aspect of the method is that, thanks to the spontaneously aggregate, the MNPs with a sub-30-nm-size range could be fast and efficiently extracted by 0.45 μm pore size mixed cellulose esters membrane filter. Thus, the elution step can be conducted by passing small amounts eluent through the MNPs on the membrane. It is also found that addition of Ag+ to water sample could improve the elution efficiency, and furthermore, minimises the matrix effects during the extraction of mercury species from natural water samples. The feasibility of the method was studied, and extraction efficiency was evaluated. The results showed that, calculated at 5 ng/L spiked concentration levels, absolute recoveries were 89.4%, 91.9% and 64.2%, and enrichment factors (EFs) were 596, 613 and 428, for inorganic mercury, methylmercury and ethylmercury, respectively. The high EFs were achieved in 5 min of overall extraction time. The method was applied to groundwater and river water samples. The results showed that its suitability for use in fast extracting trace levels of mercury species from natural water samples.  相似文献   

6.
ABSTRACT

In this work, a magnetic molecularly imprinted polymer (Fe3O4@SiO2@MIPs) was prepared via a surface-imprinted method for the determination of the triazines in environmental water samples combined with high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer showed that the Fe3O4@SiO2@MIPs was successfully synthesised and exhibited superparamagnetism. The isotherm adsorption, selectivity and adsorption kinetics experiments showed that the Fe3O4@SiO2@MIPs exhibited excellent specific recognition and fast adsorption equilibrium for triazines. The adsorption process is spontaneous and endothermic. The isotherm adsorption was consistent with Scatchard model and adsorption kinetic fit pseudo-second-order kinetic model. Under the optimised adsorption conditions, the Fe3O4@SiO2@MIPs was directly used to selectively enrich six triazines in environmental water samples. The enrichment volume was up to 500 mL, and the matrix effects were down to 0.7–12.4%. The built method has excellent linearities in the range of 0.25–500 ng L?1 with R2 in the range of 0.998–0.999, lower limit of detections (0.02–0.08 ng L?1) and higher precision (2.4–7.2%). The Fe3O4@SiO2@MIPs is expected to be widely applied to the direct enrichment of triazines in bulk environmental water samples.  相似文献   

7.
Magnetic solid-phase extraction (MSPE) employing a metal–organic framework (Fe3O4@UiO-66-OH) combined with high-performance liquid chromatography was developed for the determination of trace diuretics in urine. The structure and properties of Fe3O4@UiO-66-OH were investigated using X-ray diffraction, infrared spectroscopy, scanning electron microscopy and vibrating sample magnetometry. Magnetic solid-phase extraction conditions, such as adsorbent amount and solution pH, were optimized using response surface methodology. Under the optimal conditions, the method resulted in excellent linearity with a high correlation coefficient (r > 0.99), satisfactory intraday repeatability (1.78–2.99%), low limits of detection (0.08–0.23 ng/ml), and good recoveries in urine samples (between 93.5 and 103%). Fe3O4@UiO-66-OH based on MSPE is a novel pretreatment technique for the detection of trace diuretics in urine.  相似文献   

8.
ABSTRACT

In this study, preconcentration and separation of Cu(II) and Pb(II) ions by using Fe3O4@SiO2@Bacillus pumilis before their determinations by flame atomic absorption spectrometry (FAAS) were investigated. The thermophilic Bacillus pumilis were isolated from Meyremderesi spring, ??rnak, Turkey. Effects of important parameters such as pH, adsorbent amount, eluent type, concentration and volume of eluent and sample volume on magnetic solid phase extraction (MSPE) were examined in details. The preconcentration factors for Cu(II) and Pb(II) ions were calculated as 30 and 40, respectively. The accuracy of the proposed extraction procedure was validated analysing certificated reference materials and addition – recovery tests. The concentration of copper and lead were determined in water samples from Turkey by Flame AAS after application developed preconcentration-separation method.  相似文献   

9.
黄倩  何蔓  陈贝贝  胡斌 《色谱》2014,32(10):1131-1137
制备了苯乙烯(St)和甲基丙烯酸(MAA)共聚物改性的磁性微球Fe3O4@P(St-co-MAA),并将其作为磁固相萃取吸附剂,建立了磁固相萃取(MSPE)-气相色谱(GC)-火焰光度检测(FPD)联用分析有机磷农药(OPPs)残留的新方法。以5种有机磷农药(二嗪农、甲基毒死蜱、杀螟硫磷、毒死蜱和喹硫磷)为目标分析物,考察并优化了吸附和解吸条件,确定了最佳实验条件。在最优的实验条件下,方法对5种OPPs的检出限(S/N=3)为0.013~0.305 μg/L,方法的相对标准偏差(RSD,n=7)为3.1%~8.8%,富集倍数为406~951,线性范围达3个数量级。将该方法应用于新鲜番茄汁、草莓汁样品中的OPPs残留分析,加标回收率为85.4%~118.9%。该方法具有检出限低、分析速度快、富集倍数高等优点,为有机磷农药的残留分析提供了新的技术平台。  相似文献   

10.
Amantadine‐functionalized magnetic microspheres (Fe3O4@SiO2@ADME) were prepared and applied as magnetic solid‐phase extraction (MSPE) adsorbents for the enrichment and analysis of five opium alkaloids in hotpot seasoning samples with liquid chromatography coupled to quadrupole linear ion trap mass spectrometry (LC‐QqQLIT‐MS/MS). The adsorbents could strongly adsorb the opium alkaloids via hydrogen‐bonding, hydrophobic, and π–π conjugation effects. The established MSPE, combined with stable isotope‐labeled internal standards could reduce the matrix effect significantly. In the LC‐QqQLIT‐MS/MS analysis, the precursor and product ions of the analytes were monitored quantitatively and qualitatively by the multiple reaction monitoring and enhanced product ion mode, improving the reliability of detection for real samples. Under the optimum conditions, the limits of detection and limits of quantification were found to be in the range of 0.05–0.8 μg/kg and 0.25–2.5 μg/kg, respectively, and the recoveries of all targets were in the range 80.1–115.3%, with the intra‐day and inter‐day relative standard deviations being less than 9.4 and 10.7%, respectively. Finally, the proposed method was successfully applied to the determination of illegal additives of opium alkaloids in hotpot seasoning samples.  相似文献   

11.
A new method based on the combination of magnetic solid phase extraction (MSPE) and spectrofluorimetric determination was developed for isolation and preconcentration of fluoxetine form aquatic and biological samples using sodium dodecyl sulfate (SDS) coated Fe3O4 nanoparticles (NPs) as a sorbent. The unique properties of Fe3O4 NPs including high surface area and strong magnetism were utilized effectively in the MSPE process. Effect of different parameters influencing the extraction efficiency of fluoxetine including the amount of Fe3O4 and SDS, pH value, sample volume, extraction time, desorption solvent and time were optimized. Under optimized condition, the method was successfully applied to the extraction of fluoxetine from water and urine samples and absolute recovery amount of 85%, detection limit of 20 μg L−1 and a relative standard deviation (RSD) of 1.4% were obtained. The method linear response was over a range of 50–1000 μg L−1 with R2 = 0.9968. The relative recovery in different aquatic and urine matrices were investigated and values of 80% to 104% were obtained. The whole procedure showed to be conveniently fast, efficient and economical for extraction of fluoxetine from environmental and biological samples.  相似文献   

12.
A magnetic solid-phase extraction technique based on magnetic dendritic structured nanoparticles (Fe3O4@SiO2-NH2-G5) as adsorbent coupled with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) has been developed to detect diazepam, midazolam, zolpidem, and zaleplon in human urine. With Fe3O4@SiO2-NH2 as the central core, dendrimer (G5) grafted alternately with cyanuric chloride and imidazole were bonded to the surface of the core to synthesize Fe3O4@SiO2-NH2-G5. The morphology and structure of the magnetic materials were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and dynamic light scattering (DLS). The key parameters affecting the extraction efficiency were optimized. A satisfactory performance was obtained under the optimum extraction conditions. The proposed method was validated, and the limits of detection of zaleplon, diazepam, zolpidem, and midazolam were 0.05, 0.05, 0.02, and 0.02 ng mL?1, respectively. The linear correlation coefficients r of the four analytes were > 0.996, the intra-day precision was between 2.4 % and 9.4 % with the recoveries between 88.3 % and 104.8 %, and the inter-day precision ranged from 3.9 % to 15.2 % with the recovery in the range of 94.1 %?108.3 %. The magnetic dendritic structure nanomaterial Fe3O4@SiO2-NH2-G5 was successfully used to extract sedative-hypnotic drugs from human urine samples. The Fe3O4@SiO2-NH2-G5-based magnetic solid-phase extraction method eliminates centrifugation and filtration steps as in conventional extraction. Only one step of vortex dispersion extraction could achieve the separation and purification of the target compounds. The proposed method was simple, rapid, environment-friendly, and suitable for the analysis of sedative-hypnotic drugs in human urine.  相似文献   

13.
A simple method, air‐assisted dispersive micro‐solid‐phase extraction‐based supramolecular solvent was developed for the preconcentration of tramadol in biological samples prior to gas chromatography–flame ionization detection. A new type of carrier liquid, supramolecular solvent based on a mixture of 1‐dodecanol and tetrahydrofuran was combined with layered double hydroxide coated on a magnetic nanoparticle (Fe3O4@SiO2@Cu–Fe–LDH). The supramolecular solvent was injected into the solution containing Fe3O4@SiO2@Cu–Fe–LDH in order to provide high stability and dispersion of the sorbent without any stabilizer agent. Air assisted was applied to enhance the dispersion of the sorbent and solvent. A number of analytical techniques such as Fourier transform‐infrared spectrometry, field emission scanning electron microscope, energy‐dispersive X‐ray spectroscopy and X‐ray diffraction measurements were applied to assess the surface chemical characteristics of Fe3O4@SiO2@Cu–Fe–LDH nanoparticles. The effects of important parameters on the extraction recovery were also investigated. Under optimized conditions, the limits of detection and quantification were obtained in the range of 0.9–2.4 and 2.7–7.5 μg L?1 with preconcentration factors in the range of 450–472 in biological samples. This method was used for the determination of tramadol in biological samples (plasma, urine and saliva samples) with good recoveries.  相似文献   

14.
Extraction, pre-concentration and determination of trace amounts of mercury ions from water samples were investigated by magnetic solid phase extraction (MSPE) method using Fe3O4 nanoparticles decorated with polythionine as an adsorbent. A simple chemical synthesis by catalytic reaction of thionine in the presence of FeCl3 and hydrogen peroxide was used for preparation of the magnetic sorbent. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, vibrating sample magnetometer analysis and Fourier transform infrared spectroscopy were used to characterise the adsorbent. Mercury ions were determined by cold vapour atomic absorption spectrometry. The parameters for MSPE procedure, such as pH of the extraction solution, adsorption time, weight adsorbent, elution conditions (type, concentration and volume of the eluent), volume of the sample solution and effects of coexisting ions were investigated. The obtained optimal conditions were: sample pH of 4; sorbent amount of 4 mg; sorption time of 20 min; elution solvent of HNO3 (0.3 mol L?1)/thiourea (2% w/v) with volume of 2 mL, and breakthrough volume of 400 mL. A good linearity in the concentration range of 0.025–40 µg L?1 (R2 > 0.999) with the pre-concentration factor of 198 was obtained. The limits of detection and quantification were achieved as 0.008 and 0.025 µg L?1, respectively. Furthermore, sea and river water samples were analysed and good recoveries (97.1–99.6%) were obtained.  相似文献   

15.
In this study, graphene oxide-encapsulated core–shell magnetic microspheres (GOE-CS-MM) were fabricated by a self-assemble approach between positive charged poly(diallyldimethylammonium) chloride (PDDA)-modified Fe3O4@SiO2 and negative charged GO sheets via electrostatic interaction. The as-prepared GOE-CS-MM was carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer analysis (VSM), and X-ray photoelectron spectroscopy (XPS), and was used as a cleanup adsorbent in magnetic solid-phase extraction (MSPE) for determination of 15 trace-level environmental phenols in seafood coupled to liquid chromatography–tandem mass spectrometry (LC–MS/MS). The obtained results showed that the GOE-CS-MM exhibited excellent cleanup efficiency and could availably reduce the matrix effect. The cleanup mechanisms were investigated and referred to π–π stacking interaction and hydrogen bond between GOE-CS-MM and impurities in the extracts. Moreover, the extraction and cleanup conditions of GOE-CS-MM toward phenols were optimized in detail. Under the optimized conditions, the limits of detection (LODs) were found to be 0.003–0.06 μg kg−1, and satisfactory recovery values of 84.8–103.1% were obtained for the tested seafood samples. It was confirmed that the developed method is simple, fast, sensitive, and accurate for the determination of 15 trace environmental phenols in seafood samples.  相似文献   

16.
In the present study, ionic liquid (IL)‐modified Fe3O4 magnetic nanoparticles (Fe3O4) were synthesized by the thiol‐ene click reaction for magnetic solid‐phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in water and smoked meat samples. An IL 1‐vinyl‐3‐butylimidazolium bromide was firstly synthesized, and then immobilized on the surface of thiol group‐functionalized Fe3O4 via a thiol‐ene click reaction. The as‐synthesized Fe3O4@ILs were characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, and transmission electron microscopy. Various parameters (including the amount of adsorbent, extraction time, sample volume, and desorption conditions) affecting MSPE were optimized. Under the optimum conditions, the limits of detection of four PAHs in the range of 0.6–7.2 ng/L were obtained using high‐performance liquid chromatography–ultraviolet detection. The accuracy of the method was assessed by recovery measurements on spiked real samples and good recovery of 80–108% with relative standard deviations lower than 8.16% was achieved. The enrichment factors ranging from 699 to 858 were obtained for the analytes. This result indicated that the proposed method had great potential for sample preparation.  相似文献   

17.
In the present study, multi-walled carbon nanotube oxide was immobilized on the pyrrole magnetic nanoparticles. Application of the synthesized material was investigated for the magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs), from the environmental samples. Determinations of the analytes were performed with gas chromatography–mass spectrometry. The structure and morphology of Fe3O4@PPy–MWCNT were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermal gravimetric analysis, and vibrating sample magnetometer. Performance of MSPE is mainly affected by extraction time, sorbent amount, sample solution volume, and eluent type and volume. In this study, the best possible performance of MSPE has been achieved using a combination of central composite design and Bayesian regularized artificial neural network technique. Under the optimum extraction conditions, linear range between 0.5 and 250 µg L?1 (R 2 > 0.994), preconcentration factors from 232 to 403 and limits of detection ranging from 0.1 to 0.3 µg L?1 were obtained. Relative standard deviations for intra-day and inter-day precision were 3.3–5.1% and 3.7–5.6%, respectively. In addition, feasibility of the method was demonstrated by extraction and determination of PAHs from some real samples containing tap water, hookah water as well as soil samples, and relative recovery in the range of 85.4–106.8% was obtained. This MSPE method provides several advantages, such as high extraction efficiency, minimum sorbent for extraction of the analytes from high sample volumes, convenient extraction procedure, and short analysis times.  相似文献   

18.
We have immobilized iminodiacetic acid on mesoporous Fe3O4@SiO2 microspheres and used this material for efficient and cost effective method of magnetic solid phase extraction (SPE) of trace levels of Cd, Mn and Pb. The microspheres were characterized by infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The loaded microspheres can be easily separated from the aqueous sample solution by applying an external magnetic field. The effects of pH, sample volume, concentration and volume of eluent, and of interfering ions were investigated in detail. The method has detection limit of 0.16, 0.26 and 0.26?ng?L?1 for the ions of Cd, Mn and Pb, respectively, and the relative standard deviations (RSDs, c?=?1???g?L?1, n?=?7) are 4.8%, 4.6% and 7.4%. The method was successfully applied to the determination of these metals in biological and environmental samples using ICP-MS. Two certified reference materials were analyzed, and the results coincided well with the certified values.
Figure
Mesoporous Fe3O4@SiO2@IDA magnetic particles for fast and selective magnetic solid phase extraction of trace Cd, Mn and Pb from environmental and biological samples followed by inductively coupled plasma mass spectrometry detection.  相似文献   

19.
A novel Fe3O4/graphene/polypyrrole nanocomposite has been successfully synthesised via a simple chemical method and applied as a new magnetic solid-phase extraction (MSPE) sorbent for the separation and pre-concentration of trace amounts of Pt (IV) in environmental samples followed by flame atomic absorption spectrometric (FAAS) detection. The nanocomposite has been characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. Seven important parameters, affecting the extraction efficiency of Pt (IV), including pH, adsorption time, desorption solvent type and concentration, desorption time, elution volume and sample volume, were investigated. Under the optimised conditions, the calibration graph was linear in the range of 50–1500 μg L?1 (R = 0.993). The detection limit and pre-concentration factor (PF) for Pt (IV) were found to be 16 μg L?1 and 112.5, respectively. Under the optimised solid-phase extraction (SPE) conditions, the adsorption isotherm and the adsorption capacity of the nanocomposite for Pt (IV) were studied. Pt (IV) adsorption equilibrium data were fitted well to the Langmuir isotherm and the maximum adsorption capacity of the magnetic sorbent was calculated from the Langmuir isotherm model as 416.7 mg g?1. The precision of the method was studied as intraday and interday variations. A relative standard deviation percentage (RSD%) value less than 3.0 indicates that the method is precise. Also, the accuracy of the method was tested by the analysis of the standard reference material (NIST SRM 2556) and by recovery measurements on spiked real samples. It was also shown that the optimised method was suitable for the analysis of trace amounts of Pt (IV) in roadside soil, tap water and wastewater samples.  相似文献   

20.
This work demonstrates the application of silica supported Fe3O4 nanoparticles as sorbent phase for magnetic solid-phase extraction (MSPE) and magnetic on-line in-tube solid-phase microextraction (Magnetic-IT-SPME) combined with capillary liquid chromatography–diode array detection (CapLC-DAD) to determine organophosphorous compounds (OPs) at trace level. In MSPE, magnetism is used as separation tool while in Magnetic-IT-SPME, the application of an external magnetic field gave rise to a significant improvement of the adsorption of OPs on the sorbent phase. Extraction efficiency, analysis time, reproducibility and sensitivity have been compared. This work showed that Magnetic-IT-SPME can be extended to OPs with successful results in terms of simplicity, speed, extraction efficiency and limit of detection. Finally, wastewater samples were analysed to determine OPs at nanograms per litre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号