首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

We have prepared the composites of a room temperature nematic liquid crystalline material namely 4-(trans-4′-n-hexylcyclohexyl) isothiocyanatobenzoate (6CHBT) and gold nanoparticles (GNPs). Thermodynamic, electro-optical and dielectric properties have been investigated. Effect of dispersion of GNPs on various electro-optical and display parameters of host liquid crystalline material have been studied. Physical parameters such as threshold voltage, dielectric anisotropy and splay elastic constant have altered for composite systems. Due to the dispersion of GNPs, nematic to isotropic transition temperature is significantly increased. Relaxation frequency corresponding to flip-flop motion of the 6CHBT molecules about their short axes has increased due to the presence of GNPs.  相似文献   

2.
We prepared composites of a liquid crystalline material, 4-pentylphenyl 4-octyloxybenzoate (4PP4OB) and cadmium selenide quantum dots (CdSe-QDs) and investigated their thermodynamic, electro-optical and dielectric properties. The effect of QDs on transition temperature from isotropic to nematic and nematic to smectic A phases was evaluated in this study. The effect of CdSe-QDs inclusion on various display parameters on host liquid crystals was studied in the nematic phase. The electrical parameters of the composites – relative permittivity, dielectric anisotropy, dielectric loss and dielectric relaxation – were investigated in the nematic and smectic phases. The changes in dielectric parameters of the composites are explained in terms of Maier–Meier theory.  相似文献   

3.
The present investigation is focused on to find out the role of TiO2 nanoparticles (NPs) on altering the dielectric and electro-optical parameters of nematic liquid crystal (NLC). In addition to this, we also optimized the concentration of dopant (0.25 wt%) for a saturation value of permittivity and dielectric anisotropy in the doped system. Dielectric spectroscopy has been performed with the variation of frequency and temperature to investigate the various dielectric parameters, which demonstrate that the investigated NLC is of positive dielectric anisotropy; the observed result shows a decrement in the value of relative permittivity and dielectric anisotropy; however, the permittivity value increases for higher concentration of dopant but remains less than that of pure NLC. Electro-optical measurements have also been performed to compute the optical response of pure and dispersed NLC. It is found that optical response decreases for the NP-doped systems. This optimized concentration of NPs in NLC matrix can have various credential applications in the field of active matrix display and holography.  相似文献   

4.
Thermodynamical, optical, dielectric and electro-optical characterisation of nematic liquid crystals (LCs) and silver nanoparticle (NP) composites have been carried out. Transition temperatures of pure and composites systems have been measured. Thermodynamical studies suggest increase of clearing temperature of the composite material as compared to the pure material. Threshold voltage for switching from bright to dark state and splay elastic constant of the pure and composite materials have been determined. From frequency dependence of dielectric measurements, permittivity, loss, relaxation frequency and dielectric strength of flip-flop mechanism of LC molecules in the nematic phase have been calculated. Dielectric properties of composites have been explained in reference of Maier and Meier theory. The effects of doping of NPs on dielectric and electro-optic properties of LC-NP composites have been discussed.  相似文献   

5.
The present work concerns with the investigation of the effect of dispersion of Silica (SiO2) nanoparticles (NPs) in host ferroelectric liquid crystal (FLC) KCFLC10S on the dielectric and electro-optical properties and ultraviolet-visible (UV-VIS) absorption spectra of the pristine and dispersed systems. We have found that the dispersion of SiO2 NPs in the host FLC strongly influences the various properties of dispersed systems. No evidence of aggregates and clumps in the dispersed system has been observed. Due to SiO2 NPs dispersion, a rapid decrease in dielectric permittivity ε’, increase in conductivity σ with frequency, increase in spontaneous polarisation Ps and decrease in switching time with bias voltage have been observed. Based on the absorption spectra, we have also made an attempt to link the electro-optical and dielectric response with the mechanism of FLC–NPs interactions.  相似文献   

6.
《Liquid crystals》2012,39(12):1808-1820
ABSTRACT

The effect of biowaste porous carbon nanoparticles (PCNPs) on the dielectric and electro-optical properties of nematic liquid crystal (LC) mixture (1823A) of 4-(4-alkyl-cyclohexyl) benzene isothiocyanates and 4-(4-alkyl-cyclohexyl) biphenyl isothiocyanates has been studied. The dielectric permittivity of nematic LC has been increased with the dispersion of carbon NPs. The dielectric anisotropy has been calculated and found to be decreased with the dispersion of PCNPs into the pure nematic LC. The response time and birefringence have been also observed with the variation of temperature, frequency as well as the concentrations of carbon NPs. After the dispersion of PCNPs achieved better birefringence and faster response in the dispersed system, which is the significant application in display devices. Threshold voltage splay elastic coefficient and rotational viscosity have been calculated for both pure and NPs dispersed nematic system. Its value is increased with the dispersion of NPs. Additionally, photoluminescence and figure of merit have investigated as a comparative study of nematic matrix as well the dispersed system. The experimental results have been found to have good agreement with the theoretical data of nematic LC. An effort has been made to explain these experimental results on the basis of interaction between nematic molecules and carbon NPs.  相似文献   

7.
Khushboo  P. Sharma  K. K Raina 《Liquid crystals》2017,44(11):1717-1726
In this work, the effect of Iron nanoparticles (Fe NPs) dispersion in 4′-(Hexyloxy)-4-biphenylcarbonitrile (6OCB) nematic liquid crystal properties has been studied. Inclusion of Fe NPs (0.25 wt. %) in 6OCB liquid crystal (LC) on textures, isotropic–nematic transition temperature (TIN), electro-optical and dielectric properties have been investigated in planar aligned cell. The threshold voltage (Vth) and TIN decrease after dispersion of Fe NPs. Dielectric spectroscopy in nematic phase show that relaxation frequency (fr) also decreases after dispersion of Fe NPs in 6OCB. The observed relaxation mode is due to the flip-flop motion of LC molecules about their short axis. The band gap and AC conductivity in case of 6OCB-Fe sample increase over pure 6OCB sample. A decrease in activation energy is also noticed.  相似文献   

8.
This article proposes a methodology to prepare polymer dispersed liquid crystal (PDLC) films working in the reverse-mode operation, where the ion-doped nematic liquid crystals (NLCs) with negative dielectric anisotropy (Δε) were locked by polymer walls. On-state and off-state of films were controlled by an electric field. In the absence of an electric field, it appears to be transparent. In the field, the homogeneous alignment NLCs form dynamic scattering, giving rise to opaque. The effect of the cylindrical holes with different diameters of photo masks and liquid crystal Δε on the electro-optical properties and transmittance wavelength range of 400–3000 nm light of samples were investigated. It was found that it exhibited very good electro-optical characteristics, high contrast ratio and excellent infrared energy-efficient of films used as switchable windows.  相似文献   

9.
We have prepared the composites of a room temperature Nematic Liquid Crystals and Single-Walled Carbon Nanotubes. Effect of dispersion of nanotubes on various dielectric and electro-optic parameters on host nematic liquid crystals were investigated. The changes in dielectric and electro-optic parameters (viz: relative permittivity, dielectric anisotropy, switching threshold voltage and splay elastic constant) were observed for composite systems. The composites filled in the cells have been probed under applied bias electric field and it enhanced the nematic ordering of the liquid crystal molecules in the composites which results overall improvement of dielectric and electro-optic parameters of the prepared composites.  相似文献   

10.
In this article, we study the electro-optical (EO) properties of the homogeneous aligned nematic liquid crystal (N-LC) doped with cobalt oxide (Co3O4) nanoparticles (NPs). The EO characteristics of Co3O4 doped N-LC are higher performance, indicating lower threshold voltage (1.33 V), faster rising time (1.479 ms), and faster falling time (9.343 ms) than pure liquid crystal (LC) cells. We have demonstrated these results by investigating the relationship between dielectric constants and LC device properties. Furthermore, we proved NPs doped N-LC cells drive low power operation without capacitance hysteresis. Our experimental results were verified by software simulation based on general physical properties.  相似文献   

11.
Thermodynamical, dielectric, optical and electro-optical characterisation of pure 8CB and its composites with gold and silver nanoparticles have been studied. Thermodynamical studies suggest a decrease in clearing temperature of the nanocomposite systems as compared to the pure system. Dielectric parameters of pure nematic liquid crystal and nanocomposites in the homeotropic and planar aligned samples have been measured in the frequency range of 1–35 MHz. Ionic conductivity increases significantly in nematic and smectic Ad (SmAd) phases, whereas dielectric anisotropy is almost unchanged for both the nanocomposites. Threshold voltage for Freederick transition, switching voltage and splay elastic constant have decreased in the case of nanocomposite systems. Relaxation frequency and activation energy of an observed relaxation mode corresponding to molecular rotation about the short axis increase in the SmAd phases of both the nanocomposites. The optical study suggests that due to dispersion of nanoparticles, the optical band gap has decreased.  相似文献   

12.
Rod-shaped 5 wt.% copper-doped ZnO (ZnO:Cu2+) ferromagnetic nanoparticles (NPs), prepared by hydrothermal method, were dispersed in ferroelectric liquid crystal (FLC) named Felix 17/100. The effect of ferromagnetic NPs on the physical properties of FLC material (Felix 17/100) has been investigated by dielectric, electro-optical and polarising optical microscopic methods. A noteworthy time-dependent memory has been observed in the NPs-dispersed FLC composite attributed to the coupling of magnetic field associated to NPs with the director orientation of FLC. Improvement in spontaneous polarisation and dielectric susceptibility of FLC material has been ensued with the addition of ferromagnetic NPs. Faster electro-optic response, at lower applied voltage, has also been observed in NPs-dispersed FLC composite. These changes are accredited to the magneto-electric dipolar coupling existing due to the interactions between magnetic-dipole and electric-dipole moments of magnetic NPs and FLC material, respectively. The formation of periodic domains capable to show memory effect has been observed in composite. The observed time-dependent memory was confirmed by dielectric and electro-optical methods. FLC material enriched with the properties of ferromagnetic NPs can be utilised in advanced multifunctional optical devices, time-dependent memory-based security devices and computational purposes.  相似文献   

13.
《Liquid crystals》2000,27(8):1029-1033
We have investigated the electro-optical performance of switchable nematic emulsions as a function of temperature. The electro-optical properties of nematic emulsions are highly dependent on temperature because several parameters such as droplet size, number density, viscosity, surface free energy, elastic constant, refractive indices, dielectric anisotropy, and liquid crystal/monomer solubility are affected by temperature. In particular, both ON state transmittances and decay times show a decreasing behaviour with increasing temperature. On the contrary, the OFF state transmittances increase, and the rise times do not change in an appreciable way.  相似文献   

14.
We have investigated the electro-optical performance of switchable nematic emulsions as a function of temperature. The electro-optical properties of nematic emulsions are highly dependent on temperature because several parameters such as droplet size, number density, viscosity, surface free energy, elastic constant, refractive indices, dielectric anisotropy, and liquid crystal/monomer solubility are affected by temperature. In particular, both ON state transmittances and decay times show a decreasing behaviour with increasing temperature. On the contrary, the OFF state transmittances increase, and the rise times do not change in an appreciable way.  相似文献   

15.
Two new homologous series of bent-core compounds have been synthesized. Their mesophase behaviour has been investigated by polarizing microscopy, differential scanning calorimetry, X-ray diffraction, NMR spectroscopy, and by dielectric and electro-optical measurements. It was found that, with one exception, all the chlorine-substituted compounds form a nematic phase and an optically isotropic ‘banana phase’. The latter phase shows spontaneously chiral domains of opposite handedness. This phase may be considered as a type of smectic blue phase. The mesophase behaviour of the homologous bromine-substituted compounds is more complicated. Depending on the chain length, B6, columnar, nematic or the isotropic ‘banana phase’ occur.  相似文献   

16.
Methods of 3D imaging present on the market can be divided into two basic groups: autostereoscopic and stereoscopic. At the stereoscopic methods of 3D imaging it is necessary to use special glasses for separation of images constituting stereo-pair. The most commonly used active glasses consist of two electro-optical transducers based on twisted nematic or other electro-optical effects. Here the evaluation of liquid crystal mixtures is designed intentionally for 3D active glasses in order to eliminate drawbacks of active glasses available on the contemporary market. Material parameters of new designed liquid crystal mixtures such as: elastic constants, viscosity, refractive indices, dielectric and spectral properties as well as response times have been determined. In addition to the symmetrisation of the switching times of 3D active glasses, a dual frequency nematic liquid crystal has been proposed.  相似文献   

17.
Changes in the dielectric and thermodynamical properties of electron beam-irradiated 4′-octyl-4-cyanobiphenyl (8CB) were studied. Irradiation-induced changes in the phase transition temperature, dielectric anisotropy, relaxation frequency and activation energy of an observed non-collective relaxation mode corresponding to molecular rotation about the short axis were determined in both nematic and smectic Ad phases. In the nematic phase, dielectric anisotropy increased for a small dose but decreased for a relatively high dose, whereas the relaxation frequency increased due to the irradiation. The pure and irradiated samples were characterised by UV–visible spectroscopy, Fourier transform infrared spectroscopy, gas chromatography, gas chromatography coupled with mass spectroscopy and pulse radiolysis. The observed changes in the dielectric parameters are related to the detachment of the CN group from some of the 8CB molecules due to the electron beam irradiation.  相似文献   

18.
ABSTRACT

Here, we present the effect of copper (II) oxide nanoparticles (nCuO) on dielectric and electro-optical parameters of a newly prepared ferroelectric liquid crystal (FLC) mixture, namely W302. The FLC mixture, comprising of pyrimidine compounds, was characterised through dielectric spectroscopy, differential scanning calorimetry (DSC), polarising optical microscopy (POM) and other electro-optical methods. The material parameters such as spontaneous polarisation, rotational viscosity, response time and tilt angle of W302 were found to be 14 nC/cm2, 240 mPa.s, 150 µs and 28?, respectively. The phase transition temperatures of W302 were observed through DSC and further confirmed by the dependence of dielectric loss factor in homogeneously aligned FLC sample with temperature. We also demonstrate the observance of a low-frequency dielectric relaxation mode due to the unwinding of the helix, called as partially unwound helical mode (p-UHM) along with Goldstone mode. The behaviour of p-UHM has been systematically studied with temperature and applied bias field. Further, dispersion of nCuO into host W302 has shown a significant increase in dielectric permittivity. Also, the p-UHM relaxation peak in the dielectric regime has disappeared with the incorporation of nCuO. These studies would be useful to fabricate better electro-optical devices for display, switching and beam steering applications. The formulation and characterization of a ferroelectric liquid crystal (FLC) mixture W302 composed of pyrimidine compounds is presented. Then, we observed the effect of copper (II) oxide nanoparticles (nCuO) on dielectric and electro-optical parameters of a newly prepared and characterized FLC mixture.  相似文献   

19.
《Liquid crystals》2012,39(12):1868-1876
ABSTRACT

Addition of nanomaterial into pure nematic liquid crystals (NLCs) leads to improvement in the various physical properties of the liquid crystal (LC) host. Doping of nanomaterials affects the local molecular arrangement of the LC molecules. Here, we present the results of our investigation on the effect of functionalised silver nanoparticles (f-AgNPs) on the physical properties of the rod-shaped NLC, 4-trans-pentyl-cyclohexyl cyanobenzene (5PCH). The dielectric constant, threshold voltage, elastic constants, birefringence and conductivity measurements were performed on pure 5PCH and its f-AgNPs doped nanocomposites as a function of temperature in planar cell. The magnitude of dielectric anisotropy, elastic constants and birefringence in nanocomposites were enhanced with increasing concentration of f-AgNPs indicating enhancement of order parameter in the nematic medium. Threshold voltage decreases with increasing concentration of f-AgNPs. Both parallel and perpendicular components of conductivity decrease with increasing concentration of f-AgNPs due to the absorption of ion by the doped f-AgNPs. This observed decrease in conductivity in nanocomposites is further confirmed by calculating the ion transportation number and time of flight. The ion transport number i.e ionic contribution present in the LC cell was found to be 0.966 in pure 5PCH, whereas 0.830 in 0.5 wt% of f-AgNPs nanocomposite of 5PCH.  相似文献   

20.
ABSTRACT

We are reporting on the interaction of zinc oxide (ZnO) nanoparticles (NPs) with the lyotropic phase comprises of Polyoxyethylene (20) sorbitan monolaurate and protic solvent ethylene glycol. The concentration of the NPs has been varying from 0.05 to 0.5 wt%. Multiwall lamellar and inverse phases have been observed at lower and higher concentration of ZnO NPs doping. Interestingly, the organization of ZnO NPs on the periphery and inside the periphery of ring-like structures has been observed at lower and higher concentration of the dopant, respectively. Such organization of the NPs can be explained considering interfacial interaction amid host and dopant and may also attribute to the adsorption mechanisms of surfactant. Effects of NPs doping on the dielectric dynamics has also been examined. About 32.6% decrease in the dielectric permittivity has been noticed at higher NPs doping. Such decrement in permittivity could be a result of the screening of the ZnO NPs dipole moment by the adsorption of surfactant molecules on their surface. Relaxation and optical parameters of the non-doped and doped mixtures have also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号