首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Monodisperse poly(methyl methacrylate) (PMMA) particles containing various concentrations of stearyl methacrylate (SMA) were prepared, and a liquid crystal (LC) was swollen into the particles using a solute co-diffusion method (SCM). Phase separation behaviors between the polymer and LC were monitored by utilizing an optical and a polarized microscope (OM/POM). The monodisperse LC microcapsules were then applied to a polymer-dispersed liquid crystal (PDLC), and the electro-optical properties were investigated. As a result, the threshold and driving voltages were improved when the SMA content increased. The long alkyl chains of SMA in the capsules should exist at the interface of the LC and polymer resulting in an enhancement of phase separation between the polymer and LC, which largely influences the electro-optical properties of PDLC.  相似文献   

2.
Polymer-dispersed liquid crystals (PDLC) are composite materials consisting of micron-sized droplets of liquid crystal dispersed in a polymer matrix. The easiest method to obtain a PDLC film is the polymerisation-induced phase separation process (PIPS). The liquid crystal is mixed with a monomer of low molecular weight and polymerisation is induced by heat or UV light. The increasing molecular weight of the polymer causes the phase separation of liquid crystal from the polymer matrix as micron-sized droplets. In this work, we have studied the structural changes induced in the polymer matrix of a PDLC after the PIPS process by deuterium nuclear magnetic resonance. Two different selectively deuterated monomers have been synthesized and investigated: isobutyl methacrylate (IBMA-d2) and methyl methacrylate (MMA-d3). The main results were the disappearance of the characteristic two-site hop in poly-IBMA, due to liquid crystal molecules, and the lack of unreacted MMA molecules in the liquid crystal droplets. In this last case, we found that it is possible to confine temporarily the unreacted MMA molecules within liquid crystal droplets.Abbreviations MMA Methyl methacrylate - IBMA Isobutyl methacrylate - PDLC Polymer-dispersed liquid crystal - PIPS Polymerisation-induced phase separation - 2H-NMR Deuterium nuclear magnetic resonance*Dedicated to Professor V. Bertini for his 70th birthday  相似文献   

3.
Polymer dispersed liquid crystal (PDLC) films can be switched electrically from a light-scattering off-state to a highly transparent on-state. Thin films were prepared via a polymerization-induced phase separation process, using electron beam radiation. The liquid crystal (LC)/polymer materials were obtained from blends of an eutectic nematie mixture E7 and a polyester acrylate-based polymer precursor. The optical and electro-optical properties of the PDLC films obtained depend strongly on the LC concentration. The LC solubility limit in the polymer matrix and the fractional amount of LC contained in the droplets were determined by means of calorimetrie measurements.  相似文献   

4.
Polymer dispersed liquid crystal (PDLC) films can be switched electrically from a light scattering off-state to a highly transparent on-state. Thin films were prepared via a polymerization-induced phase separation process using electron beam radiation. The liquid crystal (LC)/polymer materials were obtained from blends of a eutectic nematic mixture E7 and a polyester acrylate based polymer precursor. The optical and electrooptical properties of the obtained PDLC films strongly depend on the LC concentration. The LC solubility limit in the polymer matrix and the fractional amount of LC contained in the droplets were determined by calorimetric measurements.  相似文献   

5.
Polymer dispersed liquid crystal (PDLC) films were prepared by a devised method, in which photo‐polymerization induced phase separation in a mixtures of a macro‐iniferter, methyl acrylater, and liquid crystal. The morphology of the obtained PDLC films was examined on a polarized optical microscopy, and the effect of molecular weight of MIs on the electro‐optical properties was deliberately investigated. Decreasing the molecular weight of MIs in the films led to formation of larger liquid crystal droplets and a lower Vth values. Vsat increased and the memory effect decreased because of the increased interface anchoring strength induced by the higher molecular weight of polymer matrices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1530–1534, 2009  相似文献   

6.
Highly mono-sized poly(methyl methacrylate) (PMMA)/liquid crystal (LC) microcapsules having a mono-sized single LC domain were prepared by the solute codiffusion method and solvent evaporation. The size of the LC domain in the microcapsules could be controlled by the amount of LC introduced during the swelling stage. The electro-optical properties of the polymer dispersed liquid crystal (PDLC) prepared by using the microcapsules was highly improved. In particular, the threshold voltage was lowered and the switching behaviour with an applied electric field was sharpened drastically compared with PDLC prepared simply by solvent evaporation-induced phase separation.  相似文献   

7.
Polymer-dispersed liquid crystal (PDLC) systems based on polysulfone as carrying matrix and 4-cyano-4?-pentylbiphenyl (5CB) liquid crystal (LC) were obtained as thin transparent films. The PDLC films were prepared by solvent- and thermally induced phase separation methods, with various compositions in the two components. Information on the phase separation was obtained by polarised light optical microscopy, differential scanning calorimetry and scanning electron microscopy. The PDLC composites show well-defined droplets of submicrometric size, around 650 nm for a medium content of LC and around 250 nm for a low one. The droplets show a radial configuration and a homeotropic alignment of the LC molecules within. By contact angle measurement and surface free energy calculations, it was established that self-assembling of aliphatic units of the two composite components, at droplet interface, is the driving force of the homeotropic alignment. Moreover, these data indicated the potential biocompatibility of the studied composites. The photophysical behaviour shows a better light emission of the PDLCs containing bigger droplets.  相似文献   

8.
This work reports the effect of dye on the photopolymerisation and electro-optical properties of polymer dispersed liquid crystal (PDLC) composite films. Dichroic PDLC (DPDLC) films based on a photocurable polymer and nematic liquid crystal (LC) with an azo dichroic dye were prepared by photopolymerisation-induced phase separation method. Polarising optical microscopy has been used for monitoring the phase separation kinetics and two-phase morphology evolution in the DPDLC system. LC domains with radial structures during initial period of phase separation adopted a resultant morphology of bipolar configuration over the course of polymerisation. The phase separation and morphology of LC domains was found to be dependent on the amount of dye used. Moreover, the addition of small amount of dye reduced the switching voltage, and enhanced the contrast ratio with improved switching time in the PDLC films. It was shown that, under the application of an electric field, the molecular orientation and absorbance of dichroic dye can be controlled in DPDLC to induce non-linearity and colour contrast without the use of polarisers.  相似文献   

9.
Iniferter polymerization was employed to prepare polymer dispersed liquid crystal (PDLC) films and an additional photoinitiator was introduced to induce the phase separation of polymer matrices themselves on the process of preparing the PDLC. The effect of the polymerization kinetics and the resultant microphase-separated structures of polymer matrices on the electro-optical properties of PDLC films were studied. It was found that the bigger length scale of phase separation of polymer matrices induced strong light-scattering resulting in low ON-state transmittance. And faster polymerization kinetic induced higher threshold and saturation voltages.  相似文献   

10.
环氧树脂基高分子分散液晶材料相分离过程的研究   总被引:1,自引:0,他引:1  
根据高分子分散液晶材料在相分离过程中透光率的变化,研究了高分子分散液晶材料相分离过程与液晶浓度、温度的关系,观察到相分离过程中的周期性的起伏现象.对相分离过程与高分子分散液晶材料的电光性能作了初步探讨  相似文献   

11.
Polymer dispersed liquid crystals (PDLCs) using nematic liquid crystal and photo-curable polymer (NOA 65) were prepared by polymerisation-induced phase separation technique, in equal ratio (1:1) of polymer and liquid crystal (LC). We demonstrate that doping of small amount (0.125%, wt./wt.) of multiwall carbon nanotubes (CNTs) and orange azo dichroic dye in PDLC generously controlled the molecular orientation, dynamics of LC in droplet and size of droplets. The effects of multiwall CNTs and dye on PDLCs were studied in terms of transition temperature, droplet morphology, transmittance characteristic, contrast ratio and response time. The results exhibited that the values of the threshold electric fields were reduced from 8 V/µm (pure PDLC) to 1.18 and 1.72 V/µm, doped with multiwall CNTs and dye, respectively. The CNTs-doped PDLC shows faster switching response as compared with pure PDLC and dye-doped PDLC. However, dye-doped PDLC shows much higher contrast among all PDLC samples. Further, the results also illustrate that the birefringence value of LC in PDLCs was changed with doping of CNTs and dye.  相似文献   

12.
以可逆加成-断裂链转移(RAFT)、引发转移终止(iniferter)活性自由基聚合相结合的方法,用一步法制备了不同分子量的大分子引发剂RAFT-PS-co-PCMSI(MI),并通过紫外光聚合诱导相分离法制备了以接枝聚合物为基体的聚合物分散液晶(PDLC)膜.研究了不同分子量的MI对PDLC的微观形貌,关闭状态透光率,阈值电压,饱和电压以及记忆效应等方面的影响.研究表明,降低PDLC中MI的分子量,会使得液晶微滴粒径增大,阈值电压(Vth)、饱和电压(Vsat)减小,记忆效应、关闭状态透光率升高.  相似文献   

13.
'Reverse' or 'polymer ball' polymer dispersed liquid crystal (PDLC) samples were prepared by a photopolymerization induced phase separation method. A detailed study of the effects of the sample preparation parameters, such as curing time, curing intensity, and liquid crystal concentration are reported. It was found that by adjusting these parameters, we were able to change the morphology of these 'polymer ball' PDLC samples and thus change their optical characteristics. Incomplete polymerization of the PDLC samples results in a higher threshold voltage and a lower ON state transmission. When the amount of monomer is too low, the shape of the resulting polymer ball becomes irregular, and the sample has a larger threshold voltage and a larger saturation voltage.  相似文献   

14.
In this letter, iniferter polymerization was employed to prepare polymer dispersed liquid crystal (PDLC) films. Polystyrene (PS) was prepared as a macro-iniferter (MI). With the addition of MI in PDLC films, poly(methyl acrylate)-b-polystyrene was prepared in situ and used as polymer matrix in photopolymerization induced phase separation (PIPS). A reduction in driving voltages and an improvement in the ON state transmittance were observed for the sample prepared with a small amount of MI; while a poor electro-optical performance was obtained for that without any MI. Moreover, molecular weight and refractive index of the polymer matrix could be easily adjusted by the concentration of MI, and the matrix seems to be a prospective material for the PDLC devices.  相似文献   

15.
Polymer-dispersed liquid crystal (PDLC) films were prepared from thermal polymerisation-induced phase separation in heat-curable monomers/nematic liquid crystal (LC) mixtures. For PDLCs with a certain amount of LCs, the microstructure and the refractive index of polymer networks could be influenced by the relative content of epoxy monomers, owing to their different chemical structures. The effect of these factors on the electro-optic properties of films was also investigated.  相似文献   

16.
The optical effects of liquid crystals can be realized when the mesogens are dispersed in a supporting and stabilizing polymer phase. Thermoplastics were chosen for their structural reversibility and ease of fabrication of polymer‐dispersed liquid crystals (PDLCs) from solution via solvent‐induced phase separation (SIPS). The component match and tuning in PDLCs was achieved in a common solvent through predictions of solubility parameters. The PDLCs were first prepared using SIPS and were then exposed to thermal treatments on a hot stage polarizing microscope or in a differential scanning calorimeter. At elevated temperatures the polymer and mesogen may become miscible, while upon cooling thermally induced phase separation (TIPS) should occur, preferably above the isotropic–nematic transition temperature. The nematic phase existed within disperse phase droplets that were stabilized and supported by the matrix polymer. The temperature range of the nematic phase was extended in the PDLC configuration. The droplet size was important for liquid crystalline optical behaviour. Polymer–mesogen interactions, identified through solubility parameters, were important in ensuring sufficient but not coarse phase separation.  相似文献   

17.
The kinetics of the polymerization induced phase separation of liquid crystal (LC)/monomer mixture has been investigated by means of depolarized light intensity technique and polarized light microscope (PLM). To examine the effect of the electric field, a DC electric field was applied across the mixtures during the phase separation process. The kinetic study indicates that the phase separation process is accelerated when the electric field is applied. The morphologies of the formed polymer dispersed liquid crystal (PDLC) films were observed by PLM. The electric field applied during the phase separation process yields the PDLC with small LC domains and fine morphologies. The clearing temperature (TNI) of the formed PDLC films was measured by the PLM and it is found that the TNI increases with the applied electric field intensity.  相似文献   

18.
Acrylic polyethylene glycol(PEG)-based polymer-dispersed liquid crystal (PDLC) films have been fabricated to investigate the effect of intermolecular interactions on PDLC performance. For this purpose, the amphiphilic liquid crystal and polymers are selected as PDLC composite materials. The acrylic PEG contents are varied from 0 to 66.66 mol wt.% in order to understand the effects of different levels of additions on the microstructure and electro-optical properties of the PDLC films. For this intention, polarized optical microscopy and UV–vis spectroscopy are used. The extent of phase separation and anchoring energy are also examined using Fourier transform infrared (FTIR) spectroscopy and contact angle measurements in consequence of acrylic PEG addition. The contrast ratio, threshold voltage, as well as saturation voltage, tended to increase with the addition of acrylic PEG. The molecular affinity involved in the polymer matrix and LC molecules affected the phase separation which is responsible for the formation of domain size; this accordingly changed the electro-optical properties of PDLC film.  相似文献   

19.
A polymer dispersed liquid crystal (PDLC) film that has good electro-optical properties is produced by the method of polymerized-induced phase separation. Based on the application foreground, its capability parameters, such as contrast ratio, work voltage, and visual angle, are characterized for the first time by a white light but not a fixed wavelength light. The results show the PDLC film has a low work-voltage of 20 V, more than 150° visual angle, high stability, and long lifetime. The differences between plastic and glass ITO-coated substrates of PDLC films are also studied in this paper. The plastic substrate has better property and will have a wider perspective especially in the portable, tender and folded display devices. Due to adjustable properties of film by electric field, PDLC has the potential application for display device, sensor, switch, grating, and new generation analytical apparatus.  相似文献   

20.
采用可逆加成-断裂链转移(RAFT)、引发转移终止(Iniferter)活性自由基聚合法分步骤制备多官能Iniferter的大分子(RAFT-MI),并通过紫外光聚合诱导相分离法制备接枝共聚物为基体的聚合物分散液晶(PDLC)膜,研究了不同含量的RAFT-MI对PDLC膜的微观形貌、开态透光率、阈值电压(Vth)、饱和电压(Vsat)、对比度和记忆效应的影响.结果表明,当PDLC中的RAFT-MI含量从10%增加到30%时,开态透光率先增加,随后又逐渐降低,而Vth、Vsat逐渐降低,对比度先增加,然后又降低,记忆效应减弱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号