首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rate and equilibrium constants for the reactions of pyridines with donor‐substituted benzhydrylium ions have been determined spectrophotometrically. The correlation equation log k(20 °C)=s(N+E), in which s and N are nucleophile‐specific parameters and E is an electrophile‐specific parameter, has been used to determine the nucleophilicity parameters of various pyridines in CH2Cl2 and aqueous solution and to compare them with N of other nucleophiles. It is found that the nucleophilic organocatalyst 4‐(dimethylamino)pyridine (DMAP) and tertiary phosphanes have comparable nucleophilicities and carbon basicities despite widely differing Brønsted basicities. For that reason, these reactivity parameters are suggested as guidelines for the development of novel organocatalysts. The Marcus equation is employed for the determination of the intrinsic barriers of these reactions.  相似文献   

2.
The review summarizes the results of studies in the field of development of efficient proceduresfor the synthesis of dialkyl chalcogenides, dialkyl dichalcogenides, vinyl and ethynyl chalcogenides, andselenium-, tellurium-, and silicon-containing heterocyclic compounds on the basis of elemental seleniumand tellurium.  相似文献   

3.
To determine the kinetic parameters of the reactions between triphenylphosphine and dialkyl acetylenedicarboxylates in the presence of an NH-acid, such as 2,3-di-hydroxybenzaldehyde, the reactions were monitored by UV spectrophotometry. The second order fits were automatically drawn and the values of the second order rate constants (k2) were calculated using standard equations as part of the program. The dependence of the second order rate constant (lnk2) on the reciprocal temperature was in agreement with the Arrhenius equation, in the temperature range studied, providing the relevant plots to calculate the activation energy of all reactions. Furthermore, we evaluated the effects of solvent, structure of different alkyl groups within the dialkyl acetylenedicarboxylates, and their concentration on the rates of reactions. The proposed mechanism was confirmed by experimental results and steady-state approximation. The first step (k2) of the reaction was recognized as the rate determining step on the basis of experimental data.  相似文献   

4.
The rate constants for the SH2 reactions of tri-n-butyltin radicals with several dialkyl selenides and tellurides have been measured by EPR spectroscopy.  相似文献   

5.
Second-order rate constants for the reactions of the trifluoromethylsulfonyl substituted benzyl anions 1a-e (CF3SO2CH(-)-C6H4-X) with the benzhydrylium ions 2f-j and structurally related quinone methides 2a-e have been determined by UV-vis spectroscopy. The reactions proceed approximately 10-40 times faster in methanol than in DMSO leading to the unique situation that these carbocation carbanion combinations are faster in protic than in dipolar aprotic media. The pK(a) values of some benzyl trifluoromethylsulfones were determined in methanol (1c-H, 17.1; 1d-H, 16.0; 1e-H, 15.0) and found to be 5 units larger than the corresponding values in DMSO. Rate and equilibrium measurements thus agree that the trifluoromethylsulfonyl substituted benzyl anions 1a-e are more effectively solvated by ion-dipole interactions in DMSO than by hydrogen bonding in methanol. Br?nsted correlations show that in DMSO the trifluoromethylsulfonyl substituted carbanions 1 are less nucleophilic than most other types of carbanions of similar basicity, indicating that in DMSO the intrinsic barriers for the reactions of the localized carbanions 1 are higher than those of delocalized carbanions, including nitroalkyl anions. The situation is reversed in methanol, where the reactions of the localized carbanions 1 possess lower intrinsic barriers than those of delocalized carbanions as commonly found for proton-transfer processes. As a consequence, the relative magnitudes of intrinsic barriers are strongly dependent on the solvent.  相似文献   

6.
The kinetics of the reactions of benzhydrylium ions and quinone methides with eight tertiary phosphanes and two phosphites were investigated photometrically. The nucleophilicity parameters N and slope parameters s of these nucleophiles were derived according to the equation log k(20 degrees C) = s(N + E). Correlations of the nucleophilicity parameters N with pK(Ha) and sigma(p) values as well as with the rate constants of reactions with other electrophiles are discussed. In some cases, equilibrium constants for the formation of phosphonium ions were measured, which allow one to determine the Marcus intrinsic barriers of DeltaG(0) (not equal) = 58 kJ mol(-1) for the reactions of triarylphosphanes with benzhydrylium ions. The N parameters [5.51 for P(OPh)3, 10.36 for P(OBu)3, 14.33 for PPh3, 15.49 for PBu3, 18.39 for P(4-Me2NC6H4)3] are compared with the reactivities of other classes of nucleophiles (see, www.cup. uni-muenchen.de/oc/mayr).  相似文献   

7.
Alkyl 1H-pyrrole-2-carboxylates and dialkyl 1H-pyrrole-2,5-dicarboxylates were synthesized in quantitative yield by reactions of 1H-pyrrole, 2-acetyl-1H-pyrrole, and 1-methyl-1H-pyrrole with carbon tetrachloride and aliphatic alcohols in the presence of iron-containing catalysts. A probable reaction mechanism was proposed, and the rate constants and energies of activation of particular steps were determined on the basis of experimental data.  相似文献   

8.
The reaction of dialkyl acetylenedicarboxylates with arylidenemalononitriles in the presence of KSCN in MeCN led to a mixture of dialkyl (3E)‐4‐aryl‐3‐(arylideneamino)‐5,5‐dicyanocyclopenta‐1,3‐diene‐1,2‐dicarboxylates and dialkyl 4‐aryl‐5‐cyanothiophene‐2,3‐dicarboxylates. When these reactions were performed in the presence of KCN, only the functionalized 5,5‐dicyanocyclopenta‐1,3‐dienes were obtained.  相似文献   

9.
The enantiomers of dialkyl 2,3-pentadienedioate undergo interconversion during gas chromatographic separation on chiral stationary phases. In this paper the on-column apparent interconversion kinetic and thermodynamic activation data were determined for dimethyl, diethyl, propylbutyl and dibutyl 2,3-pentadienedioate enantiomers by gas chromatographic separation of the racemic mixtures on a capillary column containing a polydimethylsiloxane stationary phase coupled to 2,3-di-O-methyl-6-O-tertbutyldimethylsilyl-beta-cyclodextrin. A deconvolution method was used to determine the individual enantiomer peak areas and retention times that are needed to calculate the interconversion rate constants and the energy barriers. The apparent rate constants and interconversion energy barriers decrease slightly with an increase in the alkyl chain length of the dialkyl 2,3-pentadienedioate esters. The optimum conformation of the dialkyl 2,3-pentadienedioate molecules, their separation selectivity factors and apparent interconversion enthalpy and entropy data changes with the alkyl chain length. The dependence of the apparent interconversion energy barrier (deltaG(app)(a-->b), deltaG(app)(b-->a)) on temperature was used to determine the apparent activation enthalpy (deltaH(app)(a-->b), deltaH(app)(b-->a)) and apparent entropy (deltaS(app)(a-->b), deltaS(app)(a-->b)) (where a denotes the first and b second eluted enantiomer). The comparison of the activation enthalpy and entropy (deltaS(app)(a-->b), deltaS(app)(a-->b)) indicated that the interconversion of dialkyl 2,3-pentadienedioate enantiomers on the HP-5+Chiraldex B-DM column series is an entropy driven process at 160 degrees C. Data obtained for dimethyl 2,3-pentadienedioate enantiomers on the HP-5+Chiraldex B-DM column series at 120 degrees C (deltaG(app)(a-->b) = 123.3 and deltaG(app)(b-->a) = 124.4 kJ mol(-1)) corresponds (at the 95% confidence interval) with the value of deltaG(#) = 128+/-1 kJ mol(-1) found at this temperature by gas chromatography using a two-dimensional stop flow technique on an empty capillary column [V. Schurig, F. Keller, S. Reich, M. Fluck, Tetrahedron: Asymmetry 8 (1997) 3475].  相似文献   

10.
Chemical transformations of N-aryl-m-phenoxyphenylmethanimines and m-phenoxybenzaldehyde arylhydrazones were studied by examples of reduction thereof with complex metal hydrides and reactions with dialkyl phosphates and dialkyl phosphites.  相似文献   

11.
Theoretical energy‐based conformational analysis of bis(2‐phenethyl)vinylphosphine and related phosphine oxide, sulfide and selenide synthesized from available secondary phosphine chalcogenides and vinyl sulfoxides is performed at the MP2/6‐311G** level to study stereochemical behavior of their 31P–1H spin–spin coupling constants measured experimentally and calculated at different levels of theory. All four title compounds are shown to exist in the equilibrium mixture of two conformers: major planar s‐cis and minor orthogonal ones, while 31P–1 H spin–spin coupling constants under study are found to demonstrate marked stereochemical dependences with respect to the geometry of the coupling pathways, and to the internal rotation of the vinyl group around the P(X)‐C bonds (X = LP, O, S and Se), opening a new guide in the conformational studies of unsaturated phosphines and phosphine chalcogenides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Kinetic studies were made of the reactions between triphenylphosphine and dialkyl acetylenedicarboxylates in the presence of a NH-acid such as pyrazole. To determine the kinetic parameters of the reactions, the reaction progress was monitored by UV spectrophotometry. The second-order fits were automatically drawn and the values of the second-order rate constant (k 2) were automatically calculated using standard equations. In the temperature range studied, the dependence of ln k 2 on the reciprocal temperature was consistent with the Arrhenius equation. Furthermore, useful information was obtained from studies of the effect of solvent, structure of the reactants (different alkyl groups within the dialkyl acetylenedicarboxylates), and also the concentration of reactants on the rate of reaction. The mechanism was confirmed to involve a steady-state condition with the first step of the reaction being the rate-determining step.  相似文献   

13.
A series of S-[N-acyl-N-(alkoxycarbonylalkyl)aminomethyl] O,O-dialkyl phosphorothioates and -dithioates were prepared by the reactions of the corresponding alkali salts of dialkyl phosphorothioates or dialkyl phosphorodithioates with esters of N-acyl-N-(chloromethyl)glycine or N-acyl-N-(chloromethyl)--alanine and by the reactions of dialkylphosphorothioic or dialkylphosphorodithioic acids with N-acylated amino acids or their esters and paraformaldehyde in the presence of gaseous HCl. Some of the resulting compounds proved to be active permethrine synergists.  相似文献   

14.
The reactions of aromatic compounds and elemental chalcogens catalyzed by a copper salt with molecular oxygen as an oxidant were carried out. The reaction of 3‐substituted imidazo[1,5‐a]pyridines and elemental sulfur in the presence of CuTC (copper(I) thiophenecarboxylate) gave the corresponding bisimidazopyridyl sulfides in good to quantitative yields. The reaction proceeded even under aerobic oxidation conditions. The use of a polar solvent was crucial for the reaction, and DMSO (dimethyl sulfoxide) in particular stimulated the reaction. The reaction could be applied to common aromatic compounds, such as N‐methyl indole and dialkyl anilines. The reaction of indole proceeded at the nucleophilic C3 position rather than at the acidic C2 position. In addition, the reaction of dialkyl anilines proceeded with an ortho, para orientation. The reactions of imidazopyridines and elemental selenium under similar conditions gave the corresponding bisimidazopyridyl diselenides along with bisimidazopyridyl monoselenides. The resulting diselenides were readily converted to the corresponding monoselenides with unreacted imidazopyridines under the same conditions. The reaction could be applied to the copolymerization of bifunctional bisimidazopyridines and elemental sulfur to give oligomeric copolymers in quantitative yield.  相似文献   

15.
This study shows that the chemical reactivities depend on the orbital energy gaps contributing to the reactions. In the process where a reaction only makes progress through charge transfer with the minimal structural transformation of the reactant, the orbital energy gap gradient (OEGG) between the electron‐donating and electron‐accepting orbitals is proven to be very low. Using this relation, a normalized reaction diagram is constructed by plotting the normalized orbital energy gap with respect to the normalized intrinsic reaction coordinate. Application of this reaction diagram to 43 fundamental reactions showed that the majority of the forward reactions provide small OEGGs in the initial stages, and therefore, the initial processes of the forward reactions are supposed to proceed only through charge transfer. Conversely, more than 60% of the backward reactions are found to give large OEGGs implying very slow reactions associated with considerable structural transformations. Focusing on the anti‐activation‐energy reactions, in which the forward reactions have higher barriers than those of the backward ones, most of these reactions are shown to give large OEGGs for the backward reactions. It is also found that the reactions providing large OEGGs in the forward directions inconsistent with the reaction rate constants are classified into SN2, symmetric, and methyl radical reactions. Interestingly, several large‐OEGG reactions are experimentally established to get around the optimum pathways. This indicates that the reactions can take significantly different pathways from the optimum ones provided no charge transfer proceeds spontaneously without the structural transformations of the reactants. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Abstract

The reaction of 2,3-O-isopropylidene-D-glyceraldehyde with different dialkyl and diarylthiomethyl sulfoxides occurs with a high selectivity and produces the corresponding 1-alkyl(or l-aryl)-sulfynil-l-alkyl(or 1-aryl) thio-3,4-O-isopropylidene-D-tetroses as pure diastereoisomers. We have determined the absolute configuration of the three chiral centers formed in these reactions.  相似文献   

17.
Stable crystalline phosphorus ylides were obtained in excellent yields from the 1:1:1 addition reaction between triphenylphosphine and dialkyl acetylenedicarboxylates, in the presence of NH-acids such as 6-azauracil. These stable ylides exist in solution as a mixture of two geometrical isomers as a result of restricted rotation around the carbon–carbon partial double bond resulting from conjugation of the ylide moiety with the adjacent carbonyl group. To determine the kinetic parameters of the reactions, they were monitored by UV spectrophotometry. The second order fits were automatically drawn, and the values of the second order rate constants (k2) were automatically calculated using standard equations. At the temperature range studied, the dependence of the second order rate constant (Ln k2) on reciprocal temperature was in agreement with the Arrhenius equation. This provided the relevant plots to calculate the activation energy of all the reactions. Furthermore, useful information was obtained from studies of the effect of solvent, structure of reactants (different alkyl groups within the dialkyl acetylenedicarboxylates), and also concentration of reactants on the rate of reactions. The proposed mechanism was confirmed according to the obtained results, and a steady-state approximation and first step (k2) of the reaction was recognized as a rate-determining step on the basis of experimental data.  相似文献   

18.
New dialkyl α-aminophosphonates and α-aminothiophosphonates were synthesized by reactions of dialkyl phosphites orO,O-dialkyl thiophosphites withN-benzylidene 2-(vinyloxy)ethylamine orN-(4-fluorobenzylidene)-2-(vinyloxy)ethylamine. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1815–1817, September, 1999.  相似文献   

19.
Kinetic, isotopic, and infrared studies on well-defined dispersed Pt clusters are combined here with first-principle theoretical methods on model cluster surfaces to probe the mechanism and structural requirements for CO oxidation catalysis at conditions typical of its industrial practice. CO oxidation turnover rates and the dynamics and thermodynamics of adsorption-desorption processes on cluster surfaces saturated with chemisorbed CO were measured on 1-20 nm Pt clusters under conditions of strict kinetic control. Turnover rates are proportional to O(2) pressure and inversely proportional to CO pressure, consistent with kinetically relevant irreversible O(2) activation steps on vacant sites present within saturated CO monolayers. These conclusions are consistent with the lack of isotopic scrambling in C(16)O-(18)O(2)-(16)O(2) reactions, and with infrared bands for chemisorbed CO that did not change within a CO pressure range that strongly influenced CO oxidation turnover rates. Density functional theory estimates of rate and equilibrium constants show that the kinetically relevant O(2) activation steps involve direct O(2)* (or O(2)) reactions with CO* to form reactive O*-O-C*=O intermediates that decompose to form CO(2) and chemisorbed O*, instead of unassisted activation steps involving molecular adsorption and subsequent dissociation of O(2). These CO-assisted O(2) dissociation pathways avoid the higher barriers imposed by the spin-forbidden transitions required for unassisted O(2) dissociation on surfaces saturated with chemisorbed CO. Measured rate parameters for CO oxidation were independent of Pt cluster size; these parameters depend on the ratio of rate constants for O(2) reactions with CO* and CO adsorption equilibrium constants, which reflect the respective activation barriers and reaction enthalpies for these two steps. Infrared spectra during isotopic displacement and thermal desorption with (12)CO-(13)CO mixtures showed that the binding, dynamics, and thermodynamics of CO chemisorbed at saturation coverages do not depend on Pt cluster size in a range that strongly affects the coordination of Pt atoms exposed at cluster surfaces. These data and their theoretical and mechanistic interpretations indicate that the remarkable structure insensitivity observed for CO oxidation reactions reflects average CO binding properties that are essentially independent of cluster size. Theoretical estimates of rate and equilibrium constants for surface reactions and CO adsorption show that both parameters increase as the coordination of exposed Pt atoms decreases in Pt(201) cluster surfaces; such compensation dampens but does not eliminate coordination and cluster size effects on measured rate constants. The structural features and intrinsic non-uniformity of cluster surfaces weaken when CO forms saturated monolayers on such surfaces, apparently because surfaces and adsorbates restructure to balance CO surface binding and CO-CO interaction energies.  相似文献   

20.
The major objectives of the work undertaken were to carry out kinetic studies of the reaction between triphenylphosphine and dialkyl acetylenedicarboxylate in the presence of strong NH-acids, such as carbazole. To determine the kinetic parameters of the reaction, it was monitored by the UV spectrophotometer technique. The values of the second order rate constant (k 2 ) were automatically calculated using standard equations within the program when the second order fits of the mentioned reactions were automatically drawn by the software associated with a Cary UV spectrophotometer model Bio-300 at an appropriate wavelength. At the temperature range studied, the dependence of the second order rate constant (Ln k) on reciprocal temperature was in agreement with the Arrhenius equation. This provided the relevant plots to calculate the activation energy of all reactions. Furthermore, useful information was obtained from studies of the effect of solvent and different alkyl groups within the dialkyl acetylenedicarboxylates on the rate of reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号