首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An effective copper‐mediated synthesis of 1,5‐dialkyl‐4‐aryl‐1,2,3‐triazoles and 1,4‐dialkyl‐5‐aryl‐1,2,3‐triazoles has been achieved by the use of different N‐tosylhydrazones and alkyl amines. The scope of the substrates could be extended from anilines to aliphatic amines when 30 mol % amino acid is added into the reaction mixture. This methodology exhibits many notable features, such as broad substrates scope, high efficiency, and good regioselectivity. Preliminary mechanistic studies indicated that the reaction probably proceeded through a 1‐tosyl‐2‐vinyldiazene intermediate and subsequent aza‐Michael addition and N?N bond formation process.  相似文献   

2.
Herein, we report a practical protocol for the synthesis of sulfur cycle fused 1,2,3‐triazoles through a copper(I)‐catalyzed tandem click/intramolecular sulfenylation reaction. The reaction proceeded via a copper‐catalyzed alkyne azide cycloaddition, followed by interception of the in situ formed cuprate‐triazole intermediate with p‐toluenesulfonothioate. This reaction shows broad substrate scope, complete regioselectivity, and excellent functional group tolerance under mild reaction conditions.  相似文献   

3.
Catalyzed by molecular iodine at room temperature, under solvent‐free conditions, a two component aza‐Diels‐Alder cyclization of N‐vinyl‐2‐pyrrolidinone with N‐arylimine gave tetrahydroquinoline derivatives in good yields and high stereo‐selectivity. And three components aza‐Diels‐Alder reaction of N‐vinyl‐2‐pyrrolidinone, anilines and indole‐3‐carbaldehydes under the same condition afford only cis‐product in good yields.  相似文献   

4.
A combination of a palladium–NHC catalyst and potassium hexamethyldisilazide enables the amination of aryl sulfides with anilines to afford a wide variety of diarylamines. The reaction conditions are versatile enough for the reaction of even bulky ortho‐substituted aryl sulfides. This amination can be applied to the modular synthesis of N‐aryl carbazoles from the corresponding ortho‐bromothioanisoles. As aryl sulfoxides undergo extended Pummerer reactions to afford ortho‐substituted aryl sulfides, the Pummerer products are thus useful substrates for the amination to culminate in efficient syntheses of a 2‐anilinobenzothiophene and an indole as proof‐of‐principle of the utility of the extended Pummerer reaction/amination cascade.  相似文献   

5.
Synthesis and characterization of bis[2‐(arylimino)‐1,3‐thiazolidin‐4‐ones] are described. The one‐pot, pseudo‐five‐component reaction of an aliphatic diamine, isothiocyanatobenzene, and dialkyl but‐2‐ynedioate at room temperature in anhydrous CH2Cl2 gives the title compound in relatively high yield. Under the same conditions, aromatic 1,2‐diamines yield 2‐(arylimino)‐N‐(enaminoaryl)‐1,3‐thiazolidin‐4‐ones in a pseudo‐four‐component reaction. Their structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of cyclization is proposed (Scheme 3).  相似文献   

6.
An efficient protocol for the synthesis of β-hydroxy(alkoxy)selenides was developed through the electrochemical iodide-catalyzed oxyselenation of styrene derivatives with dialkyl(aryl)diselenides under mild reaction conditions. Mechanistic studies showed that the cation I+ is involved during the whole process, and accelerates the formation of seleniranium ion via substitution and addition reaction with dialkyl(aryl)diselenides and styrene derivatives. The corresponding products are formed in good to excellent yields. This electrochemical oxyselenation provides an efficient strategy for difunctionalization of alkenes.  相似文献   

7.
Diels‐Alder reaction of 2‐(E‐2‐nitroethenyl)‐1H‐pyrrole ( 2a ) with 1,4‐benzoquinone gave the desired benzo[e]indole‐6, 9(3H)‐dione ( 4a ) in 10% yield versus a 26% yield (lit. 86% [5]) of the known N‐methyl compound ( 4b ) from the N‐(or 1)‐methyl compound ( 2b ). Protection of the nitrogen of 2a with a phenylsul‐fonyl group ( 2c ) gave a 9% yield of the corresponding N‐(or 3)‐phenylsulfonyl compound ( 4c ). The reaction of 2b with 1,4‐naphthoquinone gave in 6% yield (lit. 64% [5]) the known 3‐methylnaphtho[2,3‐e]‐indole‐6, 9(3H)‐dione ( 6 ). The reaction of 2‐(E‐2‐nitroethenyl)furan ( 8a ) gave a small yield of the desired naphtho[2,1‐b]furan‐6, 9‐dione ( 9a ), recognized by comparing its NMR spectrum with that of 4b. The corresponding reaction of 2‐(E‐2‐nitroethenyl)thiophene ( 8b ) gave a 4% yield of naphtho[2,1‐ b ]thiophene‐6,9‐dione ( 9b ), previously prepared in 24% yield [12] in a three‐step procedure involving 2‐ethenylthiophene. Introducing an electron‐releasing 2‐methyl substituent into 8a and 8b gave 12a and 12b , which, upon reaction with 1,4‐benzoquinone, gave 2‐methylnaphtho[2,1‐b]furan‐6, 9‐dione ( 13a ) and its sulfur analog ( 13b ) in yields of 4 and 8%, respectively.  相似文献   

8.
A series of new N,N′‐dialkyl‐4,5‐dimethylimidazolium cations possessing electron‐rich 2‐imidazolylidene‐ or phosphoranylidene‐amino substituents has been efficiently synthesized from common precursors, N,N′‐dialkyl‐4,5‐dimethylimidazol‐2‐ylidenes. The new lipophilic salts obtained have been found to be highly stable towards strong alkali under both biphasic and homogeneous conditions. Their exceptional aqueous base resistance, which has hitherto only been seen with peralkylated polyaminophosphazenium cations, may be attributed to three factors: aromatic stabilization, efficient resonance charge delocalization, and steric protection of the exocyclic nitrogen linkage due to bulky lipophilic N‐alkyl substituents.  相似文献   

9.
A series of 2‐oxo‐2,5‐dihydro‐1H‐chromeno[4,3‐b]pyridine derivatives were obtained by using a one‐pot three component reaction of 2,2‐disubstituted chroman‐4‐one with aromatic aldehydes and 2‐cyanoacetamide in the presence of sodium hydroxide under solvent‐free conditions. Heating chromenopyridine derivatives with phosphoryl chloride gave the corresponding chloro derivatives. The reaction of the chloro derivatives with hydrazine hydrate afforded dihydrochromeno[4,3‐b]pyrazolo[4,3‐e]pyridines derivatives. Condensation of the dimethyl derivative compound with the aromatic aldehydes gave 8‐Arylideneamino‐6,6‐dimethyl‐10H‐chromeno[4,3‐b]pyrazolo[4,3‐e]pyridine.  相似文献   

10.
The sequential addition of aromatic Grignard reagents to O‐alkyl thioformates proceeded to completion within 30 s to give aryl benzylic sulfanes in good yields. This reaction may begin with the nucleophilic attack of the Grignard reagent onto the carbon atom of the O‐alkyl thioformates, followed by the elimination of ROMgBr to generate aromatic thioaldehydes, which then react with a second molecule of the Grignard reagent at the sulfur atom to form arylsulfanyl benzylic Grignard reagents. To confirm the generation of aromatic thioaldehydes, the reaction between O‐alkyl thioformates and phenyl Grignard reagent was carried out in the presence of cyclopentadiene. As a result, hetero‐Diels–Alder adducts of the thioaldehyde and the diene were formed. The treatment of a mixture of the thioformate and phenyl Grignard reagent with iodine gave 1,2‐bis(phenylsulfanyl)‐1,2‐diphenyl ethane as a product, which indicated the formation of arylsulfanyl benzylic Grignard reagents in the reaction mixture. When electrophiles were added to the Grignard reagents that were generated in situ, four‐component coupling products, that is, O‐alkyl thioformates, two molecules of Grignard reagents, and electrophiles, were obtained in moderate‐to‐good yields. The use of silyl chloride or allylic bromides gave the adducts within 5 min, whereas the reaction with benzylic halides required more than 30 min. The addition to carbonyl compounds was complete within 1 min and the use of lithium bromide as an additive enhanced the yields of the four‐component coupling products. Finally, oxiranes and imines also participated in the coupling reaction.  相似文献   

11.
A visible‐light mediated multicomponent cascade reaction of diselenides, alkynes, and sulfur dioxide was developed, in which multiple C?Se and C?S bonds were constructed, and unexpected β‐sulfonylvinylselane compounds were generated with high selectivity for E configuration. β‐Sulfonylvinylselane transformation into 1,4‐oxathiine‐4,4‐dioxide and sulfonylethyne derivates was then investigated. A plausible mechanism involving a selenium radical‐initiated cascade reaction and sulfur dioxide insertion was proposed.  相似文献   

12.
5‐(2‐Aminothiazol‐4‐yl)‐8‐hydroxyquinoline 2 has been synthesized by treating thiourea with 5‐chloroacetyl‐8‐hydroxyquinoline 1 . The amine 2 was treated with aromatic aldehydes to furnish schiff bases 6a‐c which on treatment with phenyl isothiocyanate gave the corresponding thiazolo‐s‐triazines 7a‐c . Reaction of 2 with phenyl isothiocyanate gave the corresponding aminocarbothiamide derivative 8 which on reaction with malonic acid in acetyl chloride afforded thiobarbituric acid derivative 9 . Coupling of 9 with diazonium salt gave the phenyl hydrazono derivative 10 . However, reaction of 2 with carbon disulphide and methyl iodide afforded dithiocarbamidate 12 which on treatment with ethylenediamine, o‐aminophenol and/or phenylenediamine gave the aminoazolo derivatives 13–15 , respectively. Other substituted fused thiazolopyrimidines 16–20 have been also prepared by the reaction of 2 with some selected dicarbonyl reagents. The characterisation of synthesized compounds has been done on the basis of elemental analysis, IR, 1H‐NMR and mass spectral data. All the newly synthesized compounds have been screened for their antimicrobial activities.  相似文献   

13.
N‐Arylation of amides and anilines with aryl iodides was efficiently catalyzed by copper thiophenecarboxylate under ligand‐free conditions with good to excellent yields. A variety of substituted aryl iodides, amides, anilines and 4‐aminoantipyrine were found to be applicable to the simple catalytic system. Furthermore, some practical, unique secondary amides, such as N‐arylacrylamides and 4‐amido‐N‐phenylbenzamides, and 4‐amino(N‐phenyl)antipyrenes, which are difficult to obtain by the classical methods, were prepared. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The hitherto unreported, highly functionalized 1H‐pyrazole‐3‐carboxylates 3 have been synthesized in good yields via a one‐pot three‐component domino reaction of phenylhydrazines, dialkyl acetylenedicarboxylates, and ninhydrin under mild conditions for the first time. No co‐catalyst or activator is required for this multicomponent reaction, and the reaction is, from an experimental point of view, simple to perform (Scheme 1). The structures of compounds 3 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of cyclization/addition reaction is proposed (Scheme 2).  相似文献   

15.
Substituted and unsubstituted naphthylamines were transformed into the corresponding triazole derivatives, which were converted to dimethyl 1H‐benz[g]indole‐2,3‐dicarboxylates by photocyclization. The reaction of the diesters with hydrazine hydrate gave the corresponding 8,9‐dihydrobenzo[g]‐pyridazino[4,5‐b]indole‐7,10(11H)‐diones (5) . One of compounds 5 was found to have chemiluminescent activity similar to luminol.  相似文献   

16.
1,4‐Diazabicyclo[2.2.2]octane has been explored as an efficient catalyst to effect the three‐component condensation reactions between malononitrile, 4‐arylurazoles, and aromatic aldehydes in ethanol under ultrasound irradiation conditions. The reactions proceeded very rapidly under mild conditions to furnish the corresponding pyrazolo[1,2‐a][1,2,4]triazole‐1,3‐dione derivatives in excellent yields.  相似文献   

17.
A simple method for the synthesis of monoselenides and diselenides having 1,2,3-triazole ring is described herein. The three component reaction of ethynylstibanes, organic azides, and selenium powder is catalyzed by CuI (10?mol%) using 1,10-phenanthroline as the ligand (10?mol%) under aerobic conditions. Either selenides or diselenides can be synthesized by selecting the appropriate amount of selenium powder for otherwise identical reaction conditions. The obtained selenides and diselenides having a 1,2,3-triazole ring are all novel compounds. By using an antimony reagent, this one-pot reaction provides regioselective double Se-arylation under simple reaction conditions.  相似文献   

18.
The reaction of N‐benzylbenzamides 6 with SOCl2 under reflux gave the corresponding N‐benzylbenzimidoyl chlorides 7 . Further treatment with KSeCN in dry acetone yielded imidoyl isoselenocyanates 3 (Scheme 2). These compounds, obtained in satisfying yields, proved to be stable enough to be purified and analyzed. Reaction of 3 with morpholine in dry acetone led to the corresponding selenourea derivatives 8 . On treatment with Et3N, the 4‐nitrobenzyl derivatives of type 3 were transformed into bis(2,4‐diarylimidazol‐5‐yl) diselenides 9 (Scheme 3). This transformation takes place only when the benzyl residue bears an NO2 group and the phenyl group is not substituted with a strong electron‐donating group. A reaction mechanism for the formation of 9 is proposed in Scheme 4. The key structures have been established by X‐ray crystallography.  相似文献   

19.
A copper‐mediated trifluoroacetylation of various arenediazonium salts with ethyl trifluoropyruvate is reported. The reaction proceeded smoothly under mild conditions at room temperature giving trifluoromethyl aryl ketones in moderate to good yields. A variety of functional groups, including methoxy, hydroxy, ester, ketone, trifluoromethyl, and halide groups, were well tolerated. A possible reaction mechanism involving an aryl radical intermediate was proposed and supported by experimental evidence. This reaction provides a new route to trifluoromethyl aryl ketones, notable synthetic targets, from the corresponding anilines.  相似文献   

20.
The reaction of 3,8‐bis(diazo)‐2,2,4,4,7,7,9,9‐octamethyldecane ( 5 ) with elemental selenium in 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) at 130°C yielded 1,2‐di‐tert‐butyl‐3,3,6,6‐tetramethylcyclohexene ( 1 ) (64%) and trans‐3,8‐di‐tert‐butyl‐4,4,7,7‐tetramethyl‐1,2‐diselenocane ( 8 ) (13%), while that of 5 with elemental sulfur in DBU gave trans‐3, 8‐di‐tert‐butyl‐4,4,7,7‐tetramethyl‐1,2‐dithiocane ( 9 ) (77%). The reaction of 3,9‐bis(diazo)‐2,2,4,4,8,8,10,10‐octamethylundecane ( 6 ) with elemental selenium in DBU at 80°C gave a cyclic triselenide, cis‐4,10‐di‐tert‐butyl‐5,5,9,9‐tetramethyl‐1,2,3‐triselenecane ( 11 ), in 15% yield as the only identifiable product. The structures of 9 and 11 were confirmed by X‐ray crystallography. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:351–356, 2002; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/hc.10046  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号