首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, paramagnetic shifts have been measured for all 1H and 13C nuclei of 5-sulfosalicylic acid (SSA) in the presence of the lanthanide ions in the second half of the series. The ligand forms isostructural complexes with these ions in aqueous solution. The separation of LISs was carried out by the use of the Reilley method and the calculated dipolar shifts were used to simulate the coordination structure of the complex. The result reveals that SSA is coordinated to lanthanide ion via two oxygens, one from the carboxylic group and the other from the phenolic group with Ln–O bond lengths equal to 2.47 Å. The lanthanide ion lies on the benzene plane and the carboxylic group is twisted 20° from the benzene ring. Of all the nuclei examined, those in the six-membered chelate ring experience significant dipolar interactions and contact interactions. Small |G/A| ratios were obtained for two protons five bonds away from the central lanthanide ion, which shows that the number of bonds alone cannot be used as a criterion for neglecting contact shifts in aromatic ligand.  相似文献   

2.
Structural analyses indicate that the ligand and lanthanide ions form mononuclear 10-coordinate ([Ln L2 · (NO3)2] · NO3 [Ln(III) = La, Sm, Nd, and Yb; L is chromone-3-carbaldehyde-(isonicotinoyl) hydrazone) complexes with 1 : 2 metal-to-ligand stoichiometry. DNA-binding studies show that the ligand and its lanthanide complexes can bind to calf thymus DNA via an intercalation mode with binding constants of 105 (mol L?1)?1, and the lanthanide complexes bind stronger than the free ligand alone. Antioxidant activities of the ligand and lanthanide complexes were determined by superoxide and hydroxyl radical scavenging methods in vitro. The ligand and complexes possess strong scavenging effects, and the lanthanide complexes show stronger antioxidant activities than the ligand and some standard antioxidants, such as vitamin C.  相似文献   

3.
A complete isostructural series of dinuclear asymmetric lanthanide complexes has been synthesized by using the ligand 6‐[3‐oxo‐3‐(2‐hydroxyphenyl)propionyl]pyridine‐2‐carboxylic acid (H3 L ). All complexes have the formula [Ln2(H L )2(H2 L )(NO3)(py)(H2O)] (Ln=La ( 1 ), Ce ( 2 ), Pr ( 3 ), Nd ( 4 ), Sm ( 5 ), Eu ( 6 ), Gd ( 7 ), Tb ( 8 ), Dy ( 9 ), Ho ( 10 ), Er ( 11 ), Tm ( 12 ), Yb ( 13 ), Lu ( 14 ), Y ( 15 ); py=pyridine). Complexes of La to Yb and Y have been crystallographically characterized to reveal that the two metal ions are encapsulated within two distinct coordination environments of differing size. Whereas one site maintains the coordination number (nine) through the whole series, the other one increases from nine to ten owing to a change in the coordination mode of an NO3? ligand. This series offers a unique opportunity to study in detail the lanthanide contraction within complexes of more than one metal. This analysis shows that various representative parameters proportional to this contraction follow a quadratic decay as a function of the number n of f electrons. Slater’s model for the atomic radii has been used to extract, from these decays, the shielding constant of 4f electrons. The average of O???O distances within the coordination polyhedra shared by both metals and of the Ln???Ln separations follow also a quadratic decay, therefore showing that such dependence holds also for parameters that receive the contribution of two lanthanide ions simultaneously. The magnetic behavior has been studied for all nondiamagnetic complexes. It reveals the effect of the spin–orbit coupling and a weak antiferromagnetic interaction between both metals. Photoluminescent studies of all the complexes in the series reveal a single broad emission band in the visible region, which is related to the coordinated ligand. On the other hand, the Nd, Er, and Yb complexes show features in the near‐IR region due to metal‐based transitions.  相似文献   

4.
Herein, we discuss how, why, and when cascade complexation reactions produce stable, mononuclear, luminescent ternary complexes, by considering the binding of hexafluoroacetylacetonate anions (hfac?) and neutral, semi‐rigid, tridentate 2,6‐bis(benzimidazol‐2‐yl)pyridine ligands ( Lk ) to trivalent lanthanide atoms (LnIII). The solid‐state structures of [Ln( Lk )(hfac)3] (Ln=La, Eu, Lu) showed that [Ln(hfac)3] behaved as a neutral six‐coordinate lanthanide carrier with remarkable properties: 1) the strong cohesion between the trivalent cation and the didentate hfac anions prevented salt dissociation; 2) the electron‐withdrawing trifluoromethyl substituents limited charge‐neutralization and favored cascade complexation with Lk ; 3) nine‐coordination was preserved for [Ln( Lk )(hfac)3] for the complete lanthanide series, whilst a counterintuitive trend showed that the complexes formed with the smaller lanthanide elements were destabilized. Thermodynamic and NMR spectroscopic studies in solution confirmed that these characteristics were retained for solvated molecules, but the operation of concerted anion/ligand transfers with the larger cations induced subtle structural variations. Combined with the strong red photoluminescence of [Eu( Lk )(hfac)3], the ternary system LnIII/hfac?/ Lk is a promising candidate for the planned metal‐loading of preformed multi‐tridentate polymers.  相似文献   

5.
The selectivity factor in the separation of lanthanide could be associated with the coordination behaviour. Thus, we observed the study in the solid phase to understand the coordination pattern of Ln(III) with the 18-crown-6 (18C6) ligand. Good selectivity of the rigid 18C6 ligand toward Ln(III) depends on gradually smaller their ionic radii of Ln(III) in the complexes formation in the presence of picrate anion (Pic), i.e. lanthanide contraction and steric effects as clearly shown in the series of [Ln(Pic)2(18C6)]+(Pic) {Ln = La, Ce, Pr, Nd, Sm, Gd} and [Ln(Pic)3(OH2)3] · 2(18C6) · 4H2O {Ln = Tb, Ho} complexes. The La-Gd complexes crystallized in an orthorhombic with space group Pbca, while the Ho complex crystallized in triclinic with space group . The lighter lanthanides complexes [La-Sm] had a 10-coordination number from the 18C6 ligand and the two picrates, forming a bicapped square-antiprismatic geometry. Meanwhile, the middle lanthanide complex [Gd] had a nine-coordination number from the 18C6 ligand and the two picrates, forming a tricapped trigonal prismatic geometry. The heavier lanthanide [Ho] is rather unique, since Ho(III) coordinated with nine oxygen atoms from three picrates and three water molecules in the opposite direction whereas three 18C6 molecules surrounded in the inner coordination sphere, forming a trigonal tricapped prismatic geometry. The 18C6 ligand is effective in controlling the molecular geometry and coordination bonding of Ln-O and can use a crystal engineering approach. No dissociation of Ln-O bonds in solution was observed in NMR studies conducted at different temperatures. The photoluminescence spectrum of the Pr complex has typical 4f-4f emission transitions, i.e. 3P0 → 3F2 (650 nm), 1D2 → 3F2 (830 nm) and 1D2 → 3F4 (950 nm).  相似文献   

6.
《Polyhedron》1999,18(8-9):1247-1251
One new diferrocene Schiff base was prepared by condensing 1′-formyl[(2,2-diferrocenyl)propane] with isonictinoyl hydrazine. 1′-formyl[(2,2-diferrocenyl)propane]isonicotinoyl hydrazone (HL) and its chelates with lanthanide ions, Ln(HL)2Cl3(H2O)n (Ln=La, Dy, Yb, Gd, Sm, Nd; n=1–5.) were prepared, isolated and characterized by elemental analysis, IR and 1H NMR spectra. In these chelates the ligand coordinates to lanthanide ions in the keto form, and some chloride ions and water molecules participate in coordination to the metal ion. The redox properties of the ligand and its complexes were investigated using cyclic voltammetric method. Both the ligand and its lanthanide complexes exhibit two distinct pairs of redox peaks displaying electrochemical characteristics of multi-component system.  相似文献   

7.
The complex-formation of lanthanide(III) elements with D-penicillamine have been investigated in acidic and neutral media. The macroscopic protonation constants of the ligand and the formation constants of [Ln.Pen]+, [Ln.Pen2]?, [Ln.Pen.OH] and [Ln.Pen.(OH)2]? complexes were determined from pH-metric data using the BEST computer program. Elemental analyses of the solid complexes indicate formation of 1?:?1 metal?:?ligand species. The binding sites in the complexes with the possible role of –COO?, –NH2 and –SH groups in the coordination have been discussed using infrared data. The complexes decompose in four steps as shown by their t.g. and d.t.a. analyses. A mechanism of decomposition is proposed which is supported by mass spectral data.  相似文献   

8.
Reactions of a tetravanadate anion, [V(4)O(12)](4-), with a series of lanthanide(III) salts yield three types of lanthanide complexes of macrocyclic polyoxovanadates: (Et(4)N)(6)[Ln(III)V(9)O(27)] [Ln = Nd (1), Sm (2), Eu (3), Gd (4), Tb (5), Dy (6)], (Et(4)N)(5)[(H(2)O)Ho(III)(V(4)O(12))(2)] (7), and (Et(4)N)(7)[Ln(III)V(10)O(30)] [Ln = Er (8), Tm (9), Yb (10), Lu (11)]. Lanthanide complexes 1-11 are isolated and characterized by IR, elemental analysis, single-crystal X-ray diffraction, and extended X-ray absorption fine structure spectroscopy (EXAFS). Lanthanide complexes 1-6 are composed of a square-antiprism eight-coordinated Ln(III) center with a macrocyclic polyoxovanadate that is constructed from nine VO(4) tetrahedra through vertex sharing. The structure of 7 is composed of a seven-coordinated Ho(III) center, which exhibits a capped trigonal-prism coordination environment by the sandwiching of two cyclic tetravanadates with a capping H(2)O ligand. Lanthanide complexes 8-11 have a six-coordinated Ln(III) center with a 10-membered vanadate ligand. The structural trend to adopt a larger coordination number for a larger lanthanide ion among the three types of structures is accompanied by a change in the vanadate ring sizes. These lanthanide complexes are examined by EXAFS spectroscopies on lanthanide L(III) absorption edges, and the EXAFS oscillations of each of the samples in the solid state and in acetonitrile are identical. The Ln-O and Ln···V bond lengths obtained from fits of the EXAFS data are consistent with the data from the single-crystal X-ray studies, reflecting retention of the structures in acetonitrile.  相似文献   

9.
Two series of new lanthanide(III) complexes of the type [Ln(HSAT)2(H2O)3Cl3] and [Ln(HSAT)2(NO3)3], where Ln = La, Pr, Nd, Sm, Eu, Gd, Dy, Tm, Yb, or Lu, and HSAT = 2-(N-salicylideneamino)-3-carboxyethyl-4,5,6,7-tetrahydrobenzo[b]thiophene, are synthesized by the reaction of LnCl3 or Ln(NO3)3 with the title ligand in ethanol. The complexes are characterized by elemental analysis, magnetic moment values, molar conductivity, IR, UV-Vis, and 1H NMR spectral data. Two selected complexes are subject to thermogravimetric analysis, and their kinetic parameters are estimated using Coats-Redfern equation. The complex [La(HSAT)2(NO3)3] underwent facile transesterification when refluxed in methanol. The ligand and some selected complexes are screened for their antimicrobial properties. Antimicrobial activities of the ligand increase on coordination with the metal ion. The text was submitted by the authors in English.  相似文献   

10.
A series of seven new tetrazole‐based ligands (L1, L3–L8) containing terpyridine or bipyridine chromophores suited to the formation of luminescent complexes of lanthanides have been synthesized. All ligands were prepared from the respective carbonitriles by thermal cycloaddition of sodium azide. The crystal structures of the homoleptic terpyridine–tetrazolate complexes [Ln(Li)2]NHEt3 (Ln=Nd, Eu, Tb for i=1, 2; Ln=Eu for i=3, 4) and of the monoaquo bypyridine–tetrazolate complex [Eu(H2O)(L7)2]NHEt3 were determined. The tetradentate bipyridine–tetrazolate ligand forms nonhelical complexes that can contain a water molecule coordinated to the metal. Conversely, the pentadentate terpyridine–tetrazolate ligands wrap around the metal, thereby preventing solvent coordination and forming chiral double‐helical complexes similarly to the analogue terpyridine–carboxylate. Proton NMR spectroscopy studies show that the solid‐state structures of these complexes are retained in solution and indicate the kinetic stability of the hydrophobic complexes of terpyridine–tetrazolates. UV spectroscopy results suggest that terpyridine–tetrazolate complexes have a similar stability to their carboxylate analogues, which is sufficient for their isolation in aerobic conditions. The replacement of the carboxylate group with tetrazolate extends the absorption window of the corresponding terpyridine‐ (≈20 nm) and bipyridine‐based (25 nm) complexes towards the visible region (up to 440 nm). Moreover, the substitution of the terpyridine–tetrazolate system with different groups in the ligand series L3–L6 has a very important effect on both absorption spectra and luminescence efficiency of their lanthanide complexes. The tetrazole‐based ligands L1 and L3–L8 sensitize efficiently the luminescent emission of lanthanide ions in the visible and near‐IR regions with quantum yields ranging from 5 to 53 % for EuIII complexes, 6 to 35 % for TbIII complexes, and 0.1 to 0.3 % for NdIII complexes, which is among the highest reported for a neodymium complex. The luminescence efficiency could be related to the energy of the ligand triplet states, which are strongly correlated to the ligand structures.  相似文献   

11.
The values of ΔG, ΔH and ΔS for the formation of the mixed 1:1:1 lanthanide EDTA complexes with the anions of 8-hydroxyquinoline-5-sulfonic acid, iminodiacetic acid and nitrilotriacetic acid were determined by pH-titrations and a direct calorimetric method. These thermodynamic data are discussed and compared with those for the formation of the Ln(III)EDTA complexes. Contrary to current opinion it is concluded that all trivalent lanthanide aquoions have the same coordination number in dilute solution. However, in the series of the lanthanide EDTA complexes the coordination number changes between Sm and Tb. In this region, equilibria occur between two types of EDTA complexes with different numbers of coordinated water molecules: The corresponding equilibrium constants could be evaluated. The coordination number changes also in many other Ln complexes along the lanthanide series, and similar equilibria occur.  相似文献   

12.
稀土-异烟酰肼席夫碱配合物的设计、合成与结构   总被引:1,自引:0,他引:1  
由异烟酰肼和2-吡啶甲醛合成了席夫碱配体HL,并和稀土离子合成组装得一系列稀土配合物。用X-射线单晶衍射对配合物的结构进行了测定。通过荧光测试发现La配合物有荧光,而Eu,Dy则使配体的荧光淬灭。  相似文献   

13.
The ability of lanthanide(III) ions to form stable complexeswith three different macrocyclic ligands, L1 , L2 and L3 , has been investigated.The Schiff base macrocycle L1 and its corresponding reduced ligand L2 arederived from 2,6-bis(2-formylphenoxymethyl)pyridine and diethylentriamine;the reduced ligand L3 is derived from 2,6-diformylpyridine and N,N-bis(3-aminopropyl)methylamine. Lanthanide nitrate complexes of L1 and L2 have beenprepared by direct reaction between each ligand and the appropriate hydrated lanthanidenitrate; attempts to obtain the corresponding perchlorate complexes have been unsuccessful.All nitrate complexes of L1 give the expected [1:1, Ln:L1 ] stoichiometry; however, complexes obtained with L2 show a [2:1, Ln:L2 ] stoichiometry. Finally, complexation reactions with L3 have been carried out in order to investigatethe coordination capability of this small and flexible ligand towards the Ln(III) ions.  相似文献   

14.
用稀土离子诱导位移和顺磁弛豫时间测定等NMR方法研究了稀土柠檬酸配合物在pH 7.4的溶液中的配位结构。结果表明稀土离子通过3-羟基和3-羧基与柠檬酸配体形成1:2的配合物, 两个端羧基没有参与配位。通过计算稀土离子和柠檬酸配体中各个碳原子间的空间距离的相对比, 建立了稀土离子与柠檬酸配体配位的新模式。  相似文献   

15.
The reaction of a chiral racemic bidentate ligand HL1 (tBu2P(O)CH2CH(tBu)OH) with mid to late trivalent lanthanide cations affords predominantly homochiral lanthanide complexes (RRR)‐[Ln(L1)3] and (SSS)‐[Ln(L1)3]. A series of reactions are reported that demonstrate that the syntheses are under thermodynamic control, and driven by a ligand ‘self‐recognition’ process, in which the large asymmetric bidentate L1 ligands pack most favourably in a C3 geometry around the lanthanide cation. The synthesis of bis(L1) adducts [Ln(L1)2X] (X=N(SiMe3)2, OC6H3tBu‐2,6) is also reported. Analysis of the diastereomer mixtures shows that homochiral (L1)2 complexes are favoured but to a lesser extent. The complexes Ln(L1)3 and [Ln(L1)2(OC6H3tBu‐2,6)] have been studied as initiators for the polymerization of ε‐caprolactone and its copolymer with lactide, glycolide and its copolymer with lactide, and ε‐caprolactam.  相似文献   

16.
The sequential reaction of a multisite coordinating compartmental ligand [2‐(2‐hydroxy‐3‐(hydroxymethyl)‐5‐methylbenzylideneamino)‐2‐methylpropane‐1,3‐diol] (LH4) with appropriate lanthanide salts followed by the addition of [Mg(NO3)2] ? 6 H2O or [Zn(NO3)2] ? 6 H2O in a 4:1:2 stoichiometric ratio in the presence of triethylamine affords a series of isostructural heterometallic trinuclear complexes containing [Mg2Ln]3+ (Ln=Dy, Gd, and Tb) and [Zn2Ln]3+ (Ln=Dy, Gd, and Tb) cores. The formation of these complexes is demonstrated by X‐ray crystallography as well as ESI‐MS spectra. All complexes are isostructural possessing a linear trimetallic core with a central lanthanide ion. The comprehensive studies discussed involve the synthesis, structure, magnetism, and photophysical properties on this family of trinuclear [Mg2Ln]3+ and [Zn2Ln]3+ heterometallic complexes. [Mg2Dy]3+ and [Zn2Dy]3+ show slow relaxation of the magnetization below 12 K under zero applied direct current (dc) field, but without reaching a neat maximum, which is due to the overlapping with a faster quantum tunneling relaxation mediated through dipole–dipole and hyperfine interactions. Under a small applied dc field of 1000 Oe, the quantum tunneling is almost suppressed and temperature and frequency dependent peaks are observed, thus confirming the single‐molecule magnet behavior of complexes [Mg2Dy]3+ and [Zn2Dy]3+.  相似文献   

17.
Complexes of 4,10‐bis(phosphonomethyl)‐1,4,7,10‐tetraazacyclododecane‐1,7‐diacetic acid (trans‐H6do2a2p, H6 L ) with transition metal and lanthanide(III) ions were investigated. The stability constant values of the divalent and trivalent metal‐ion complexes are between the corresponding values of H4dota and H8dotp complexes, as a consequence of the ligand basicity. The solid‐state structures of the ligand and of nine lanthanide(III) complexes were determined by X‐ray diffraction. All the complexes are present as twisted‐square‐antiprismatic isomers and their structures can be divided into two series. The first one involves nona‐coordinated complexes of the large lanthanide(III) ions (Ce, Nd, Sm) with a coordinated water molecule. In the series of Sm, Eu, Tb, Dy, Er, Yb, the complexes are octa‐coordinated only by the ligand donor atoms and their coordination cages are more irregular. The formation kinetics and the acid‐assisted dissociation of several LnIII–H6 L complexes were investigated at different temperatures and compared with analogous data for complexes of other dota‐like ligands. The [Ce( L )(H2O)]3? complex is the most kinetically inert among complexes of the investigated lanthanide(III) ions (Ce, Eu, Gd, Yb). Among mixed phosphonate–acetate dota analogues, kinetic inertness of the cerium(III) complexes is increased with a higher number of phosphonate arms in the ligand, whereas the opposite is true for europium(III) complexes. According to the 1H NMR spectroscopic pseudo‐contact shifts for the Ce–Eu and Tb–Yb series, the solution structures of the complexes reflect the structures of the [Ce(H L )(H2O)]2? and [Yb(H L )]2? anions, respectively, found in the solid state. However, these solution NMR spectroscopic studies showed that there is no unambiguous relation between 31P/1H lanthanide‐induced shift (LIS) values and coordination of water in the complexes; the values rather express a relative position of the central ions between the N4 and O4 planes.  相似文献   

18.
A multinuclear NMR study on [Ln(ttha)]3? and [Ln{ttha(NHR)2}]? complexes (R=Et, CH2(CHOH)4CH2OH) shows that coordinating groups of the organic ligands in these complexes are occupying all coordination sites of the metal ions, leaving no space for coordination of H2O molecules (H6ttha=triethylenetetramine‐N,N,N′,N″,N′′′,N′′′‐hexaacetic acid). The lanthanides of the first half of the series bind the ttha‐type ligands in a decadentate fashion, while the complexes formed with the smaller ions of the second half of the lanthanide series are nonadentate. One carboxylate group of the ligand remains unbound in the latter complexes. In principle, the ttha complexes can exist in six enantiomeric forms. Only one of the pair of diastereoisomers can interconvert without decoordination of the ligand. This pair of isomers seems to be predominant in solution. For the [Ln{ttha(NHR)2}]? complexes, the number of chiral centers is larger, resulting in 32 possible enantiomeric forms of the complexes. The NMR spectra of [Nd{ttha(NHEt)2}]? indicate that two dynamic processes occur between the isomers in solution. The NMRD curves of [Gd(ttha)]3?, [Gd{ttha(NHEt)2}]?, and [Gd{ttha(NHgluca)2}]? (NHgluca=D ‐glucamine) show significant differences with the previously determined outer‐sphere contributions to the NMRD profiles of the corresponding [Gd{dtpa(NHR)2}]? complexes, which can be ascribed to differences in the parameters determining the electronic relaxation.  相似文献   

19.
Two zwitterionic‐type ligands featuring π–π* and intraligand charge‐transfer (ILCT) excited states, namely 1,1′‐(2,3,5,6‐tetramethyl‐1,4‐phenylene)bis(methylene)dipyridinium‐4‐olate (TMPBPO) and 1‐dodecylpyridin‐4(1 H)‐one (DOPO), have been prepared and applied to the assembly of lanthanide coordination complexes in an effort to understand the ligand‐direction effect on the structure of the Ln complexes and the ligand sensitization effect on the luminescence of the Ln complexes. Due to the wide‐band triplet states plus additional ILCT excitation states extending into lower energy levels, broadly and strongly sensitized photoluminescence of f→f transitions from various Ln3+ ions were observed to cover the visible to near‐infrared (NIR) regions. Among which, the Pr, Sm, Dy, and Tm complexes simultaneously display both strong visible and NIR emissions. Based on the isostructural feature of the Ln complexes, color tuning and single‐component white light was achieved by preparation of solid solutions of the ternary systems Gd‐Eu‐Tb (for TMPBPO) and La‐Eu‐Tb and La‐Dy‐Sm (for DOPO). Moreover, the visible and NIR luminescence lifetimes of the Ln complexes with the TMPBPO ligand were investigated from 77 to 298 K, revealing a strong temperature dependence of the Tm3+ (3H4) and Yb3+ (2F5/2) decay dynamics, which has not been explored before for their coordination complexes.  相似文献   

20.
The three‐dimensional structures in aqueous solution of the entire series of the Ln3+ complexes [Ln(DOTP*‐Et)]? (formed from the free ligand P,P′,P″,P′′′‐[1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetrayltetrakis(methylene)]tetrakis[P‐ethylphosphinic acid] (H4DOTP*‐Et) were studied by NMR techniques to rationalize the parameters governing the relaxivity of the Gd3+ complex and evaluate its potential as MRI contrast agent. From the 1H‐ and 31P‐NMR lanthanide‐induced‐shift (LIS) values, especially of the [Yb(DOTP*‐Et)]? complex, it was concluded that the [Ln(DOTP*‐Et)]? complexes adopt in solution twisted square antiprismatic coordination geometries which change gradually their coordination‐cage structure along the lanthanide series. These complexes have no inner‐sphere‐H2O coordination, and preferentially have the (R,R,R,R) configuration of the P‐atoms in the pendant arms. Self‐association was observed in aqueous solution for the tetraazatetrakisphosphonic acid ester complexes [Ln(DOTP*‐OEt)]? (=[Ln(DOTP‐Et)]?) and [Ln(DOTP*‐OBu)]? (=[Ln(DOTP‐Bu)]?) at and above 5 mM concentration, through analysis of 31P‐NMR, EPR, vapor‐pressure‐osmometry, and luminescence‐spectroscopic data. The presence of the cationic detergent cetylpyridinium chloride (CPC; but not of neutral surfactants) shifts the isomer equilibrium of [Eu(DOTP*‐OBu)]? to the (S,S,S,S) form which selectively binds to the cationic micelle surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号