首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A novel pyridine-containing metal-organic framework (MOF, [Zn(bpdc)DMA]·DMF, bpdc = 2,2′-bipyridine-5,5′-dicarboxylate) was directly carbonized at different temperature to produce nitrogen-doped porous carbons (NPCs). The as-prepared porous carbons, NPC800 (obtained at 800 °C) and NPC1000 (obtained at 1000 °C), were characterized by scanning electron microscopy, X-ray powder diffraction, N2 sorption isotherms, and X-ray photoelectron spectroscopy (XPS). The results from elemental analysis and XPS confirmed that the pyridine groups in MOF served as nitrogen sources to produce NPCs, and NPC800 possessed the higher nitrogen content than NPC1000. N2 sorption data demonstrated that NPC800 exhibited the larger specific surface area and pore volume than NPC1000. The capacitive properties of NPC800 and NPC1000 were investigated in KOH aqueous electrolyte by cyclic voltammetry and galvanostatic charge–discharge curves. NPC800 showed the higher specific capacitance (226.6 F g?1 at 1 A g?1) than NPC1000 and retained 178.0 F g?1 even at a high current density up to 10 A g?1. It was found that the donation of N species to capacitance was more than the role of porosity in view of their synergetic effect.  相似文献   

2.
Sustainable carbon materials have received particular attention in CO2 capture and storage owing to their abundant pore structures and controllable pore parameters. Here, we report high‐surface‐area hierarchically porous N‐doped carbon microflowers, which were assembled from porous nanosheets by a three‐step route: soft‐template‐assisted self‐assembly, thermal decomposition, and KOH activation. The hydrazine hydrate used in our experiment serves as not only a nitrogen source, but also a structure‐directing agent. The activation process was carried out under low (KOH/carbon=2), mild (KOH/carbon=4) and severe (KOH/carbon=6) activation conditions. The mild activated N‐doped carbon microflowers (A‐NCF‐4) have a hierarchically porous structure, high specific surface area (2309 m2 g?1), desirable micropore size below 1 nm, and importantly large micropore volume (0.95 cm3 g?1). The remarkably high CO2 adsorption capacities of 6.52 and 19.32 mmol g?1 were achieved with this sample at 0 °C (273 K) and two pressures, 1 bar and 20 bar, respectively. Furthermore, this sample also exhibits excellent stability during cyclic operations and good separation selectivity for CO2 over N2.  相似文献   

3.
Inspired by the spongy bone structures, three-dimensional (3D) sponge-like carbons with meso-microporous structures are synthesized through one-step electro-reduction of CO2 in molten carbonate Li2CO3−Na2CO3−K2CO3 at 580 °C. SPC4-0.5 (spongy porous carbon obtained by electrolysis of CO2 at 4 A for 0.5 h) is synthesized with the current efficiency of 96.9 %. SPC4-0.5 possesses large electrolyte ion accessible surface area, excellent wettability and electronical conductivity, ensuring the fast and effective mass and charge transfer, which make it an advcanced supercapacitor electrode material. SPC4-0.5 exhibits a specific capacitance as high as 373.7 F g−1 at 0.5 A g−1, excellent cycling stability (retaining 95.9 % of the initial capacitance after 10000 cycles at 10 A g−1), as well as high energy density. The applications of SPC4-0.5 in quasi-solid-state symmetric supercapacitor and all-solid-state flexible devices for energy storage and wearable piezoelectric sensor are investigated. Both devices show considerable capacitive performances. This work not only presents a controllable and facile synthetic route for the porous carbons but also provides a promising way for effective carbon reduction and green energy production.  相似文献   

4.
The in situ tracking of the pyrolysis of a binary molecular cluster [Zn73-CH3O)6(L)6][ZnLCl2]2 is presented with one brucite disk and two mononuclear fragments (L=mmimp: 2-methoxy-6-((methylimino)-methyl)phenolate) to porous carbon using TG-MS from 30 to 900 °C. Following up the spilled gas product during the decomposed reaction of zinc cluster along the temperature rising, and in conjunction with XRD, SEM, BET and other materials characterization, where three key steps were observed: 1) cleavage of the bulky external ligand; 2) reduction of ZnO and 3) volatilization of Zn. The real-time-dependent phase-sequential evolution of the remaining products and the processing of pore forming template transformation are proposed simultaneously. The porous carbon structure featuring a uniform nano-sized pore distribution synthesized at 900 °C with the highest surface area of 1644 m2 g−1 and pore volume of 0.926 cm3 g−1 exhibits the best known capacitance of 662 F g−1 at 0.5 A g−1.  相似文献   

5.
The present study reports the preparation of naturally nitrogen-doped carbon nanostructured materials from Albizia procera leaves with enhanced electrochemical supercapacitance properties. The doped carbon materials were prepared by the pyrolysis of Albizia procera leaves at 850 °C. The effect of using various activating agents such as NaHCO3 and ZnCl2 was checked and compared on the structural and textural properties, specific capacitance, surface functional groups, and surface area. The Brunauer–Emmett–Teller (BET) analysis shows that NaHCO3-activated nitrogen-doped carbon (NaNC) has a higher specific surface area compare to ZnCl2-activated nitrogen-doped carbon (ZnNC) and nitrogen-doped carbon prepared without an activating agent (WANC). Overall, the BET and microscopic analyses confirmed that NaNC is composed of carbon nanosheets with macropores and mesopores, as well as a large number of micropores, which is completely different from the composition of ZnNC and WANC. In addition, the XPS analysis confirmed the existence of higher amount of nitrogen in NaNC compared to that of ZnNC, and WANC. NaNC exhibits a specific capacitance of 231 F g−1 at 1 A g−1 current with good energy and power densities, and an outstanding charging-discharging stability thanks to its unique features such as the existence of high amounts of nitrogen, high SSA, and the nanosheet-type morphology.  相似文献   

6.
The development of ultrastable carbon materials for potassium storage poses key limitations caused by the huge volume variation and sluggish kinetics. Nitrogen-enriched porous carbons have recently emerged as promising candidates for this application; however, rational control over nitrogen doping is needed to further suppress the long-term capacity fading. Here we propose a strategy based on pyrolysis–etching of a pyridine-coordinated polymer for deliberate manipulation of edge-nitrogen doping and specific spatial distribution in amorphous high-surface-area carbons; the obtained material shows an edge-nitrogen content of up to 9.34 at %, richer N distribution inside the material, and high surface area of 616 m2 g−1 under a cost-effective low-temperature carbonization. The optimized carbon delivers unprecedented K-storage stability over 6000 cycles with negligible capacity decay (252 mA h g−1 after 4 months at 1 A g−1), rarely reported for potassium storage.  相似文献   

7.
The development of porous materials is of great interest for the capture of CO2 from various emission sources, which is essential to mitigate its detrimental environmental impact. In this direction, porous organic polymers (POPs) have emerged as prime candidates owing to their structural tunability, physiochemical stability and high surface areas. In an effort to transfer an intrinsic property of a cyclotetrabenzoin-derived macrocycle – its high CO2 affinity – into porous networks, herein we report the synthesis of three-dimensional (3D) macrocycle-based POPs through the polycondensation of an octaketone macrocycle with phenazine-2,3,7,8-tetraamine hydrochloride. This polycondensation was performed under ionothermal conditions, using a eutectic salt mixture in the temperature range of 200 to 300 °C. The resulting polymers, named 3D-mmPOPs, showed reaction temperature-dependent surface areas and gas uptake properties. 3D-mmPOP-250 synthesized at 250 °C exhibited a surface area of 752 m2 g−1 and high microporosity originating from the macrocyclic units, thus resulting in an excellent CO2 binding enthalpy of 40.6 kJ mol−1 and CO2 uptake capacity of 3.51 mmol g−1 at 273 K, 1.1 bar.  相似文献   

8.
In this work, the micromolecule l-glutamic acid (Glu) is employed as nitrogen-rich precursor to prepare a novel porous carbon, and ZnCl2 is used as activating agent to improve the surface area and electrochemical performance of the carbon. The nitrogen content of the carbon (Glu-2.5) prepared by Glu and ZnCl2 with a mass ratio of 1:2.5 retains as high as 7.1 % at an activation temperature of 700 °C. The surface area and pore volume of Glu-2.5 are 1007.4 m2 g?1 and 0.57 cm3 g?1, respectively. Glu-2.5 exhibits a high specific capacitance of 330.6 F g?1 in 2 M KOH electrolyte at the current density of 1 A g?1and good cycling stability (89 % retention of capacitance after 5000 charge/discharge cycles). More importantly, the assembled symmetric supercapacitor using Glu-2.5 as electrodes reveals a high energy density (16.7 Wh kg?1) under the power density of 404.7 W kg?1. Owing to its inherent advantages, Glu-2.5 could be a promising and scalable alternative applied to energy storage/conversion.  相似文献   

9.
Phosphorus-rich metal phosphides have very high lithium storage capacities, but they are difficult to prepare. A low-temperature phosphorization method based on Mg reducing PCl3 in ZnCl2 molten salt at 300 °C is developed to synthesize phosphorus-rich CuP2@C from a Cu-MOF derived Cu@C composite. Abnormal oxidation of Cu by Zn2+ in the molten salt is observed, which leads to the porous honeycomb nanostructure and homogeneously distributed ultrafine CuP2 nanocrystals. The honeycomb CuP2@C exhibits excellent lithium storage performance with high reversible capacity (1146 mAh g−1 at 0.2 A g−1) and superior cycling stability (720 mAh g−1 after 600 cycles at 1.0 A g−1), showing the promising application of P-rich metal phosphides in lithium ion batteries.  相似文献   

10.
Biomass derived carbon materials are widely available, cheap and abundant resources. The application of these materials as electrodes for rechargeable batteries shows great promise. To further explore their applications in energy storage fields, the structural design of these materials has been investigated. Hierarchical porous heteroatom-doped carbon materials (HPHCs) with open three-dimensional (3D) nanostructure have been considered as highly efficient energy storage materials. In this work, biomass soybean milk is chosen as the precursor to construct N, O co-doped interconnected 3D porous carbon framework via two approaches by using soluble salts (NaCl/Na2CO3 and ZnCl2/Mg5(OH)2(CO3)4, respectively) as hard templates. The electrochemical results reveal that these structures were able to provide a stable cycling performance (710 mAh ⋅ g−1 at 0.1 A ⋅ g−1 after 300 cycles for HPHC-a, and 610 mAh ⋅ g−1 at 0.1 A ⋅ g−1 after 200 cycles for HPHC-b) in Li-ion battery and Na-ion storage (210 mAh ⋅ g−1 at 0.1 A ⋅ g−1 after 900 cycles for HPHC-a) as anodes materials, respectively. Further comparative studies showed that these improvements in HPHC-a performance were mainly due to the honeycomb-like structure containing graphene-like nanosheets and high nitrogen content in the porous structures. This work provides new approaches for the preparation of hierarchically structured heteroatom-doped carbon materials by pyrolysis of other biomass precursors and promotes the applications of carbon materials in energy storage fields.  相似文献   

11.
Hierarchically porous carbon materials with high surface areas are promising candidates for energy storage and conversion. Herein, the facile synthesis of hierarchically porous carbons through the calcination of metal–organic framework (MOF)/chitosan composites is reported. The effects of the chitosan (CS) additive on the pore structure of the resultant carbons are discussed. The corresponding MOF/chitosan precursors could be readily converted into hierarchically porous carbons (NPC‐V, V=1, 2, 4, and 6) with much higher ratios of meso‐/macropore volume to micropore volume (Vmeso‐macro/Vmicro). The derived carbon NPC‐2 with the high ratio of Vmeso‐macro/Vmicro=1.47 demonstrates a high specific surface area of 2375 m2 g?1, and a high pore volume of 2.49 cm3 g?1, as well as a high graphitization degree, in comparison to its counterpart (NPC) without chitosan addition. These excellent features are favorable for rapid ion diffusion/transport, endowing NPC‐2 with enhanced electrochemical behavior as supercapacitor electrodes in a symmetric electrode system, corresponding to a high specific capacitance of 199.9 F g?1 in the aqueous electrolyte and good rate capability. Good cycling stability is also observed after 10 000 cycles.  相似文献   

12.
Although the insertion of potassium ions into graphite has been proven to be realistic, the electrochemical performance of potassium-ion batteries (PIBs) is not yet satisfactory. Therefore, more effort is required to improve the specific capabilities and achieve a long cycling life. The mild carbonization process in molten salt (NaCl-KCl) is used to synthesize nitrogen/oxygen co-doped hierarchically porous carbon (NOPC) for PIBs by using cyanobacteria as the carbon source. This exhibits highly reversible capacities and ultra-long cycling stability, retaining a capacity of 266 mA h g−1 at 50 mA g−1 (100 cycles) and presents a capacity of 104.3 mA h g−1 at 1000 mA g−1 (1000 cycles). Kinetics analysis reveals that the potassium ion (K+) storage of NOPC is controlled by a capacitive process, which plays a crucial role in the excellent rate performance and superior reversible ability. The high proportion of capacitive behavior can be ascribed to the hierarchically porous structure and improved conductivity resulting from nitrogen and oxygen doping. Furthermore, density functional theory (DFT) calculations theoretically validate the enhanced potassium storage effect of the as-obtained NOPC. More importantly, the route to NOPC from cyanobacteria in molten salt provides a green approach to the synthesis of porous carbon materials.  相似文献   

13.
Recently, tremendous research efforts have been concentrated on developing high-performance electrode materials to meet the ever-increasing energy and power demands in supercapacitors. Herein, we presented a high-capacity supercapacitor material based on nitrogen-enriched hierarchical porous carbons (NHPCs) synthesized by the carbonization of melamine formaldehyde resins using eco-friendly and inexpensive nano-CaCO3 as template. The effects of carbonization temperature and template content on the porous structure and electrochemical characteristics were compared and discussed in detail. The prepared NHPCs possessed large surface area up to 834 m2 g?1 and high nitrogen content up to 20.94 wt %. As electrode material for supercapacitors, NHPCs exhibited superior electrochemical performances with high specific capacitance (190 F g?1 at 20 A g?1), outstanding rate capability (80 %), and excellent cycling stability (over 2,000 cycles at 5 A g?1) in 1 M sulfuric acid media. The excellent electrochemical performances are due to the synergic effects of unique hierarchical porous microstructure, abundant nitrogen and oxygen functionalities, as well as high degree of graphitization framework.  相似文献   

14.
Study of carbon black obtained by pyrolysis of waste scrap tyres   总被引:1,自引:0,他引:1  
Waste scrap tyres were thermally decomposed under various conditions. Decompositions were followed by the TGA method. Specific heating regimes were tested to obtain optimal structural properties of resulting pyrolytic carbon black produced by pyrolysis of scrap tyres and the process was characterized in temperature interval from 380 to 1,200 °C and heating rate 10, 20 and 50 °C min?1 under nitrogen atmosphere. The original scrap tyres and pyrolytic carbon black were characterized by Raman and Fourier transform infrared spectroscopy methods. Textural properties were also determined. Effect of temperature and heating rate on process of pyrolysis of scrap tyres was observed. Shifting of temperature of maximum pyrolysis rate to lower value and spreading of DTG peak is caused by increasing heating rate. Temperature 570 °C was sufficient for total scrap tyres pyrolysis. Graphitic and disordered structure was distinguished in the formed carbon black by Raman spectroscopy. With increasing temperature, heating rate and weight loss, the amount of the graphitic structure was reduced at the expense of disordered structure. Destruction of nonporous scrap tyres and formation of porous structure took place at higher temperature. Porous carbon black is formed above 380 °C, specific surface area increased up to 88 m2 g?1 .  相似文献   

15.
Producing biochar and biofuels from poultry litter (PL) through slow pyrolysis is a farm-based, value-added approach to recycle the organic waste. Experiments were conducted to examine the effect of pyrolysis temperature on the quality PL biochar and to identify the optimal pyrolysis temperature for converting PL to agricultural-use biochar. As peak pyrolysis temperature increased incrementally from 300 to 600 °C, biochar yield, total N content, organic carbon (OC) content, and cation exchange capacity (CEC) decreased while pH, ash content, OC stability, and BET surface area increased. The generated biochars showed yields 45.7–60.1% of feed mass, OC 325–380 g kg−1, pH 9.5–11.5, BET surface area 2.0–3.2 m2 g−1, and CEC 21.6–36.3 cmolc kg−1. The maximal transformation of feed OC into biochar recalcitrant OC occurred at 500 °C, yet 81.2% of the feed N was lost in volatiles at this temperature. To produce agricultural-use PL biochar, 300 °C should be selected in pyrolysis; for carbon sequestration and other environmental applications, 500 °C is recommended.  相似文献   

16.
A spherical porous carbon (SPC) with high specific surface area is prepared by spray pyrolysis at 800 °C followed by removing silica template. The prepared SPC is employed as a conductive matrix in the sulfur cathode (S-SPC) for lithium–sulfur secondary batteries. The BET surface area of the prepared SPC sample is as high as 1,133 m2 g?1 and the total pore volume is 2.75 cm3 g?1. The electrochemical evaluations including charge–discharge tests, cyclic voltammograms (CV), and electrochemical impedance spectrum suggest that the prepared S-SPC composite presents superior electrochemical stability when compared to the S-SP cathode. The as-prepared S-SPC composite shows improved cycle performance. The reversible discharge capacity is about 637 mAh g?1 after 50 cycles, which is much better than that of the as-prepared sulfur–Super P carbon black composite. It may be attributed to the high porosity and excellent conductive structure of the SPC.  相似文献   

17.
CO2 adsorption in porous carbon materials has attracted great interests for alleviating emission of post-combustion CO2. In this work, a novel nitrogen-doped porous carbon material was fabricated by carbonizing the precursor of melamine-resorcinol-formaldehyde resin/graphene oxide (MR/GO) composites with KOH as the activation agent. Detailed characterization results revealed that the fabricated MR(0.25)/GO-500 porous carbon (0.25 represented the amount of GO added in wt.% and 500 denoted activation temperature in °C) had well-defined pore size distribution, high specific surface area (1264 m2·g−1) and high nitrogen content (6.92 wt.%), which was mainly composed of the pyridinic-N and pyrrolic-N species. Batch adsorption experiments demonstrated that the fabricated MR(0.25)/GO-500 porous carbon delivered excellent CO2 adsorption ability of 5.21 mmol·g−1 at 298.15 K and 500 kPa, and such porous carbon also exhibited fast adsorption kinetics, high selectivity of CO2/N2 and good recyclability. With the inherent microstructure features of high surface area and abundant N adsorption sites species, the MR/GO-derived porous carbon materials offer a potentially promising adsorbent for practical CO2 capture.  相似文献   

18.
High-performance activated carbon for electrochemical double-layer capacitors (EDLC) has been prepared from cation exchange resin by carbonization and subsequent activation with KOH. The activation temperature has a key role in the determination of porous carbon possessing high surface areas, and large pore structures. The porous carbon activated at 700 °C (carbon-700-1:4) has high surface area (2236 m2?g?1) and large total pore volume (1.15 cm3?g?1), which also displays best capacitive performances due to its well-balanced micro- or mesoporosity distribution. In details, specific capacitances of the carbon-700-1:4 sample are 336.5 F?g?1 at a current density of 1 A?g?1 and 331.8 F?g?1 at 2 A?g?1. At high current density as 20 A?g?1, the retention of its specific capacitance is 68.4 %. The carbon-700-1:4 sample also exhibits high performance of energy density (46.7 Wh?kg?1) and long cycle stability (~8.9 % loss after 3,000 cycles). More importantly, due to the amount of waste ion-exchange resins increasing all over the world, the present synthetic method might be adopted to dispose them, producing high-performance porous carbons for EDLC electrode materials.  相似文献   

19.
Development of Pt group metal-free catalysts for low-temperature CO oxidation remains critical. In this work, active and stable mesoporous Cu-Ce-Ox solid solutions are prepared by using spray pyrolysis. The specific surface areas and pore volumes reach as high as 170 m2 g−1 and 0.24 cm3 g−1, respectively. The results of CO oxidation study suggest that (1) the catalyst obtained by spray pyrolysis possesses much higher activity than those made by co-precipitation, sol-gel, and hydrothermal methods; (2) the optimal Cu0.2-Ce0.8-Ox solid solution presents a reactivity over 28 times that of both single-component CuO and CeO2 at 70 °C. Based on the study of pure-phase Cu-Ce-Ox solid solutions by selective leaching of segregated CuOx species, the active center for CO oxidation is confirmed as the bimetallic Cu-Ce-O site, whereas the individual CuOx particles not only act as spectators but also block the active Cu-Ce-O sites. A low apparent activation energy of approximately 48 kJ mol−1 is detected for CO oxidation at the Cu-Ce-O site, making Cu-Ce-Ox solid solutions able to present high activity at low temperature. Furthermore, the Cu-Ce-Ox catalysts exhibit excellent stability and thermal tolerance toward CO oxidation.  相似文献   

20.
Porous carbon materials rich in defects are promising candidates in energy storage and conversion applications. Herein, a facile template-free approach is reported for the synthesis of a two-dimensional (2 D) mesoporous carbon material derived from fullerene (C60) microsheets (FMSs) through simple heat treatment. The sample obtained at 1000 °C (FMS1000) shows a large surface area of 1507.6 m2 g−1 owing to the presence of mesopores and rich defects, which promote electron and mass transfer in the electrocatalytic process of the oxygen reduction reaction (ORR), showing an excellent performance with an onset potential of 0.95 V, a half-wave potential of 0.85 V, and long-term durability of 2000 cycles, comparable to the performance of commercial Pt/C. Moreover, FMS1000 displays a remarkable supercapacitive property with a specific capacitance of 330.7 F g−1 at 0.2 A g−1 and good long-term stability with a capacitance retention of 97 % over 50 000 cycles. Thus, a practical strategy for the production of mesoporous carbon materials with different morphological structures and porous defects as high-performance energy materials is advanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号