首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

2.
Feng Pan 《结构化学》2020,39(1):7-10
Machine learning is an emerging method to discover new materials with specific characteristics.An unsupervised machine learning research is highlighted to discover new potential lithium ionic conductors by screening and clustering lithium compounds,providing inspirations for the development of solid-state electrolytes and practical batteries.  相似文献   

3.
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce3+ ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.  相似文献   

4.
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm-2 delivers a stable area capacity of 6.6 mAh cm-2 over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm-2 over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.  相似文献   

5.
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SEI)on these materials,which is critical to the electrochemical performance of SIBs,remains at its infancy.Here in this paper,ZnSe@C nanoparticles were prepared from ZIF-8 and the SEI layers on these electrodes with and without reduced graphene oxide(rGO)layers were examined in details by X-ray photoelectron spectroscopies at varied charged/discharged states.It is observed that fast and complicated electrolyte decomposition reactions on ZnSe@C leads to quite thick SEI film and intercalation of solvated sodium ions through such thick SEI film results in slow ion diffusion kinetics and unstable electrode structure.However,the presence of rGO could efficiently suppress the decomposition of electrolyte,thus thin and stable SEI film was formed.ZnSe@C electrodes wrapped by rGO demonstrates enhanced interfacial charge transfer kinetics and high electrochemical performance,a capacity retention of 96.4%,after 1000 cycles at 5 A/g.This study might offer a simple avenue for the designing high performance anode materials through manipulation of SEI film.  相似文献   

6.
CXN天然沸石的研究2: 吸附性质   总被引:3,自引:0,他引:3  
李军  邱瑾  龙英才 《化学学报》2000,58(8):988-991
采用N~2,NH~3,CO~2,乙烯,丙烯,水,甲醇,乙醇,丙醇等作为吸附剂,研究了由我国CXN天然沸石改性制得的H-STI和Na-STI沸石的吸附性质,H-STI和Na-STI沸石的BET表面积及微孔孔体积约为420m^2/g和0.20m^3/g。根据NH~3和CO~2在H-STI沸石上的吸附等温线计算得到它们的吸附热分别为44.8和26.5kJ/mol。乙烯,丙烯,甲醇,乙醇,丙醇等在Na-STI沸石上的吸附等温线表明该沸石对有机分子的吸附具有链长选择性。在低分压下水相对于甲醇的吸附量表明沸石具有一定的疏水性质。  相似文献   

7.
常温常湿条件下Au/MeO~x催化剂上CO氧化性能   总被引:12,自引:0,他引:12  
王桂英  张文祥  蒋大振  吴通好 《化学学报》2000,58(12):1557-1562
利用共沉淀法制备了Au/MeO~x催化剂(Me=Al,Co,Cr,Cu,Fe,Mn,Ni,Zn)。在常温常湿条件下,考察了不同氧化物负载的金基催化剂的CO氧化性能。结果表明,氧化物种类对催化剂的活性和稳定性均有较大的影响。Cu,Mn,Cr等氧化物负载的金基催化剂的活性较差,而Zn,Fe,Co,Ni,Al等金属氧化物负载的金基催化剂可将CO完全氧化,又具有一定的稳定性,在相同反应条件下,CO完全转化时的稳定性顺序为Au/ZnO>Au/α-Fe~2O~3>Au/Co~3O~4>Au/γ-Al~2O~3≈Au/NiO。还发现水对Au/MnO~x催化剂的活性和稳定性有负作用,而对180℃焙烧制备的Au/ZnO-180催化剂的活性和稳定性均有明显的湿度增强作用。  相似文献   

8.
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg-1.To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm-2 and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.  相似文献   

9.
Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and FexP particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of FexP particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn-1,a power density of 92.9 m W cm-2 at 137 m A cm-2 and an excellent durability were exhibited.  相似文献   

10.
Cobalt-Aluminum layered double hydroxide(CoAl LDH) is a hopeful electrode material due to the advantage of easy modifiability for preparing LDH-based derivatives.However,there is short of modification methods to prepare the Co-based derivatives from CoAl LDH and also short of an intuitive perspective to analyze the pseudocapacitance mechanism of CoAl LDH and its derivatives.Herein,Graphene/CoAl LDH and its derivatives including Graphene/CoS,Graphene/CoS-1,Graphene/CoOOH,Graphene/CoP were prepared by reasonably using alkali etching treatment,sulfofication and phosphorization.The specific capacitance of Graphene/CoAl LDH,Graphene/CoS,Graphene/CoS-1,Graphene/CoOOH,Graphene/CoP at1 A g-1 are 260.7,371.3,440.8,61.4 and 122.2 F g-1,especially.The pseudocapacitance mechanism of Graphene/CoAl LDH and its derivatives was analyzed.Due to the positive effect of sulfofication on the electrical conductivity of GO and cobalt sulfide,the Graphene/CoS and Graphene/CoS-1 exhibit the optimal electrochemical performance and superior rate capability.In addition,due to the repulsion effect between Graphene and OH-,the Graphene/CoAl LDH exhibits optimal cycling stability of 224.1% capacitance retention after 20000 cycles.Besides,the reason of terrible specific capacitance of Graphene/CoOOH is that the presence of H bond in interlayer of CoOOH inhibits the interaction between Co3+ and OHspecies.Hence,not all modifications will increase the specific capacitance of the electrode materials.Overall,this work provides us with a detailed analysis of the electrochemical mechanism and correlation of CoAl LDH and its derivatives from the perspective of crystal structure and composition.  相似文献   

11.
高吸水性树脂的吸水机理   总被引:57,自引:0,他引:57  
高吸水性树脂是三度空间网络聚合物,是高分子电介质。在高分子网络链上嵌有可电离的离子对,遇水形成离子网络。该树脂能吸收自身重量几百倍至几千倍的水,且保水性好,即使在压力下,水也不从中溢出。其吸水机理可用Flory-Huggins热力学公式来解释。  相似文献   

12.
Atmospheric water surface discharge is a promising method for water treatment. The selection of discharge gap distance must take a pair of conflicting aspects into account: the chemical efficiency grows as the discharge gap distance decreases, while the spark breakdown voltage decreases as the gap distance decreases. To raise the spark breakdown voltage and the chemical efficiency of atmospheric pressure water surface discharge, resistive barrier discharge is introduced in this paper. Both the high voltage electrode and the ground electrode are suspended above water surface to form an electrode-water-electrode discharge system. The water layer plays the role of a resistive barrier which inhibits the growth rate of discharge current as voltage increases. Experiments conducted at different discharge gap distances and water conductivities indicate that both the spark breakdown voltage and the chemical efficiency are remarkably raised in comparison with traditional water surface discharge. After parameter optimization, the discharge reactor is scaled up with activated carbon fiber electrodes and advantages of water resistive barrier discharge are kept.  相似文献   

13.
Spectral Irradiance in Pond Water: Influence of Water Chemistry   总被引:2,自引:0,他引:2  
Knowing the depth of UV penetration in ponds and the chemical variables that control underwater spectral irradiance is a prerequisite to predicting the influence of UV on amphibians and other pond organisms. The present study found that over 99% of UVB (280–315 nm) radiation was attenuated in the top 10–20 cm of ponds sampled on the edge of the Canadian Shield near Peterborough, Ontario. While the principal attenuating substance was, as in lakes, dissolved organic carbon (DOC), neither DOC nor DOC fluorescence were useful predictors of the attenuation coefficients other than the observation that all values of DOC were high and all attenuation coefficients were also high. The lack of a reliable relationship between DOC and attenuation resulted from differences throughout the season in the fraction of the DOC capable of absorbing radiation (chromophores) and the fraction capable of fluorescing (fluorophores). Attenuation was higher than predicted from DOC during springtime when amphibians lay their eggs. Absorbance coefficients measured using a spectrophotometer proved to be reliable predictors of both UVB and UVA attenuation coefficients measured in the ponds with a spectro-radiometer. While DOC provides an effective sun screen against the direct damage of UV radiation, the high attenuation means that the photochemical activity spread over at least 15 m in the ocean is confined to only a few centimeters in ponds.  相似文献   

14.
Pure water has been characterized for nearly a century, by its dissociation into hydronium (H3O)1+ and hydroxide (HO)1- ions. As a chemical equilibrium reaction, the equilibrium constant, known as the ion product or the product of the equilibrium concentration of the two ion species, has been extensively measured by chemists over the liquid water temper-ature and pressure range. The experimental data have been nonlinear least-squares fitted to chemical thermodynamic-based equilibrium equations, which have been accepted as the industrial standard for 35 years. In this study, a new and statistical-physics-based water ion product equation is presented, in which, the ions are the positively charged protons and the negatively charged proton-holes or prohols. Nonlinear least squares fits of our equation to the experimental data in the 0-100 ℃ pure liquid water range, give a factor of two better precision than the 35-year industrial standard.  相似文献   

15.
The characteristics of water vapor polarization were calculated, and several polarization theory equations applicable to different states of aggregation of molecular systems were obtained.  相似文献   

16.
17.
By using density functional theory (DFT) and high-level ab initio theory, we have investigated the structure, interaction energy, electronic property, and IR spectra of the water trimer cation [(H2O) 3 + ]. Two structures of the water trimer cation [the H3O+ containing linear (3Lp) structure versus the ring (3OO) structure] are compared. For the complete basis set (CBS) limit of coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)], the 3Lp structure is 11.9?kcal/mol more stable than the 3OO structure. This indicates that the ionization of water clusters produce the hydronium cation moiety (H3O+) and the hydroxyl radical. It is interesting to note that the calculation results of the water trimer cation vary seriously depending on the calculation level. At the level of M?ller?CPlesset second-order perturbation (MP2) theory, the stability of 3OO is underestimated due to the underestimated O??O hemibonding energy. This stability is also underestimated even for the CCSD(T) single point calculations on the MP2-optimized geometry. For the 3OO structure, the MP2 and CCSD(T) calculations give closed-ring structures with a hemi-bond between two O atoms, while the DFT calculations show open-ring structures due to the overestimated O??O hemibonding energy. Thus, in order to obtain reliable stabilities and frequencies of the water trimer cation, the CCSD(T) geometry optimizations and frequency calculations are necessary. In this regard, the DFT functionals need to be improved to take into account the proper O??O hemibonding energy.  相似文献   

18.
19.
咸水鱼类与淡水鱼类营养物质研究   总被引:7,自引:0,他引:7  
对六种咸水鱼类和五种淡水鱼类的营养物质的含量作了比较研究。认为淡水鱼类与咸水鱼类的氨基酸和营养物质的含量相近似,总体上无显著差异。认为咸水鱼类的营养比淡水鱼类传统观点缺乏科学根据,应加以修正。  相似文献   

20.
Here we report a quantitative study of the orientational structure and motion of water molecule at the air/water interface. Analysis of Sum Frequency Generation (SFG) vibrational peak of the free O-H stretching band at 3700 cm-1 in four experimental configurations showed that orientational motion of water molecule at air/water interface is libratory within a limited angular range. The free OH bond of the interfacial water molecule is tilted around 33° from the interface normal and the orientational distribution or motion width is less than 15°. This picture is significantly different from the previous conclusion that the interfacial water molecule orientation varies over a broad range within the ultrafast vibrational relaxation time, the only direct experimental study concluded for ultrafast and broad orientational motion of a liquid interface by Wei et al.(Phys. Rev. Lett. 86, 4799, (2001)) using single SFG experimental configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号