首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The Keplerate‐type giant nanoporous isopolyoxomolybdate (NH4)42[MoVI72MoV60O372‐(CH3COO)30(H2O)72], denoted {Mo132}, has been used as a catalyst for the synthesis of1,2,4,5‐tetrasubstituted imidazoles by the one‐pot, four‐component thermal reaction of benzil with aromatic aldehydes, primary amines, and ammonium acetate under solvent‐free conditions. The catalyst was prepared according to a previously published literature procedure using inexpensive and readily available starting materials, and subsequently characterized by FT‐IR, UV and X‐ray diffraction spectroscopy, as well as microanalysis. The results showed that {Mo132} exhibited high catalytic activity towards the synthesis of 1,2,4,5‐tetrasubstituted imidazoles, with the desired products being formed in good to high yields. Furthermore, the catalyst was recyclable and could be reused at least three times without any discernible loss in its catalytic activity. Overall, this new catalytic method for the synthesis of 1,2,4,5‐tetrasubstituted imidazoles provides rapid access to the desired compounds following a simple work‐up procedure, and avoids the use of harmful organic solvents. This method therefore represents a significant improvement over the methods currently available for the synthesis of tetrasubstituted imidazoles.  相似文献   

2.
A novel, efficient, and environmentally friendly method for the synthesis of polyhydroquinoline derivatives by a one‐pot, four‐component unsymmetrical Hantzsch condensation of dimedone, aldehydes, ethyl acetoacetate, and ammonium acetate in the presence of a catalytic amount of tetrabutylammonium hexatungstate [TBA]2[W6O19] under solvent‐free conditions has been developed. The results showed that this heterogeneous catalyst has high catalytic activity and the desired products were obtained in good to high yields. Moreover, the catalyst was found to be reusable and considerable catalytic activity was still achieved after the fifth run.  相似文献   

3.
A one pot three‐component coupling reaction of phenylacetylene, aldehyde, and amine derivatives in the presence of Cu(II) Salen complex as an efficient heterogeneous catalyst under solvent‐free conditions is reported. The catalyst displayed high activity and afforded the corresponding propargylamines in good to excellent yields. This method provides a wide range of substrate applicability. The catalyst was reused several times without significant loss of its catalytic activity.  相似文献   

4.
An efficient, environmentally friendly procedure for the synthesis of amidoalkyl naphthols through the one‐pot, three‐component reaction of β‐naphthol, aryl aldehydes, and acetamide in the presence of a carbon‐based solid acid under thermal solvent‐free conditions is described. The beneficial fea-tures of this new synthetic approach include short reaction time, high yields, clean reaction profiles, and a simple work‐up procedure. Furthermore, the catalyst can be readily recycled and reused four times without obvious significant loss of activity. The structure of the catalyst was confirmed by Fourier transform infrared spectroscopy, N2 adsorption/desorption analysis, and X‐ray diffraction.  相似文献   

5.
An ultrasound‐assisted aldol condensation reaction has been developed for a range of ketones with a variety of aromatic aldehydes using poly(N‐vinylimidazole) as a solid base catalyst in a liquid‐solid system. The catalyst can be recovered by simple filtration and reused at least 10 times without any significant reduction in its activity. The reaction is also amenable to the large scale, making the procedure potentially useful for industrial applications.  相似文献   

6.
Nanocrystalline MgO with a relatively high surface area and mesoporous structure was synthesized by a surfactant assisted precipitation method for use as the support of nickel catalysts for steam reforming of methane. The samples were characterized by X‐ray diffraction, N2 adsorption, temperature‐programmed reduction, temperature‐programmed oxidation, scanning electron microscopy, and transmission electron microscopy. The catalysts showed high catalytic activity and good stability in the steam reforming of methane. Increasing the nickel loading up to 10 wt% gave increased activity. Catalysts with higher nickel loadings showed more deposited carbon after reaction. The excellent anti‐coking performance of the catalysts was attributed to the formation of a nickel‐magnesia solid solution, basicity of the support surface, and nickel‐support interaction.  相似文献   

7.
Cathode catalysts for direct alcohol fuel cells (DAFCs) must have high catalytic activity for the oxy‐gen reduction reaction (ORR), low cost, and high tolerance to the presence of methanol or ethanol. Pt is the benchmark catalyst for this application owing to its excellent electrocatalytic activity, but its high cost and low tolerance to the organic fuel permeating through the membrane have hindered the commercialization of DAFCs. Herein we present a facile synthesis route to obtain organic fuel‐tolerant Zr‐ and Ta‐based catalysts supported on carbon. This method consists of a simple precipitation of metal precursors followed by a heat treatment. X‐ray diffraction analyses confirmed that the obtained samples were crystalline ZrO2?x and Na2Ta8O21?x having crystallite sizes of 26 and 32 nm, respectively. The thermal treatment effectively increased the activity of the catalysts to‐wards the ORR, although further optimization is necessary. Both catalysts exhibited a high tolerance to the presence of methanol with only a moderate reduction in ORR activity even at high methanol concentration (0.5 mol/L).  相似文献   

8.
Hexaalkylguanidinium halides exhibit an efficient catalytic activity in the synthesis of cyclic carbonates from epoxides and carbon dioxide. By this method cyclic carbonates can be obtained in a high yield and a high selectivity at a low temperature and atmospheric pressure. This procedure is easy for the product isolation and recycling of the catalyst.  相似文献   

9.
A microwave-assisted sol-gel method was employed for the preparetion of nano-sized MgO particles using Mg(NO 3)2·6H2O as precursor and deionized water as solvent.The sample calcined at 500℃ had a high specific surface area of 243.2m2/g and particles sizes from 9.5to10.5nm.For comparison,MgO nanoparticles were also synthesized without microwave irradiation.X-ray diffraction (XRD) characterization showed the formation of smaller particles after microwave irradiation.The structure and morphology of the MgO particles were analyzed by N2 adsorption-desorption,XRD,scanning electron microscopy,and transmission electron microscopy.Their catalytic behavior was studied with the one-pot synthesis of Hantzsch1,4-dihydropyridines from the reaction of aromatic aldehydes,ethyl acetoacetate,and ammonium acetate.The MgO nanoparticles have high catalytic activity and gave the desired products in good to high yields.The catalyst can be easily recovered by filtration and was used at least three times with only a slight reduction in its catalytic activity.  相似文献   

10.
1,1'‐Butylenebispyridinium hydrogen sulfate is an efficient, halogen‐free and reusable Brnsted ionic liquid catalyst for the synthesis of ethyl‐4‐aryl/heteryl‐hexahydro‐trimehtyl‐5‐ oxoquino‐line‐3‐carboxylates by the one‐pot condensation of dimedone, aryl/heteryl aldehydes, ethyl aceto‐acetate, and ammonium acetate under solvent‐free conditions. This method has the advantages of high yield, clean reaction, simple methodology, and short reaction time. The ionic liquid can be re‐cycled five times without significant loss of the catalytic activity.  相似文献   

11.
A new process of low-temperature methanol synthesis from CO/CO2/H2 based on dual-catalysis has been developed. Some alcohols, especially 2-alcohol, were found to have high catalytic promoting effect on the synthesis of methanol from CO hydrogenation. At 443 K and 5 MPa, the synthesis of methanol could process high effectively, resulting from the synergic catalysis of Cu/ZnO solid catalyst and 2-alcohol solvent catalyst. The primary results showed that when 2-butanol was used as reaction solvent, the one-pass average yield and the selectivity of methanol, in 40 h continuous reaction at temperature as low as 443 K and 5 MPa, were high up to 46.51% and 98.94% respectively. The catalytic activity was stable and the reaction temperature was 80 K or so lower than that in current industry synthesis process. This new process hopefully will become a practical method for methanol synthesis at low temperature.  相似文献   

12.
<正>In this article,an efficient,simple and environmentally friendly approach to the synthesis of diacetals(diketals) pentaerythritol using SO_3H-functionalized ionic liquids(ILs) as catalysts was reported.The ILs show high catalytic activity and reusability with good to excellent yields of the desired products.Hammett method has been used to determine the acidity order of these ionic liquids and the results are consistent with the catalytic activities observed in acetalization reaction.Maximum product yield of 93%was observed on using[PSPy][OTf]as catalyst and it can be reused at least 8 times without obvious activity loss.  相似文献   

13.
In this work, a series of Ni-Mo-Mg-O catalysts with mesoporous structure prepared by sol-gel method were investigated for the oxidative dehydrogenation of propane (ODHP). The techniques of temperature-programmed reduction with H2 (H2-TPR), N2 adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS) were employed for catalyst characterization. It is found that the activity of the catalysts for ODHP increases first and then decreases with the increase of Mo content. The catalyst with a Mo/Ni atomic ratio of 1/1 exhibits the best catalytic activity, which gives the propene selectivity of 81.4% at a propane conversion of 11.3% under 600°C and maintains the good catalytic performance for 22 h on stream. This is related not only to its high reducibility and dispersion as revealed by TPR and XRD, but also to the formation of more selective oxygen species on the MoOx-NiO interface as identified by XPS.  相似文献   

14.
Ag2S‐graphene/TiO2 composites were synthesized by a facile sonochemical method.The products were characterized by X‐ray diffraction,scanning electron microscopy,energy dispersive X‐ray spectroscopy,transmission electron microscopy,and UV‐Vis diffuse reflectance spectrophotometry.During the synthesis reaction,the reduction of graphene oxide and loading of Ag2S and TiO2 particles were achieved.The Ag2S‐graphene/TiO2 composites possessed a large adsorption capacity for dyes,an extended light absorption range,and efficient charge separation properties.Hence,in the photodegradation of rhodamine B,a significant enhancement in the reaction rate was observed with the Ag2S‐graphene/TiO2 composites as compared to pure TiO2.The generation of reactive oxygen species was detected by the oxidation of 1,5‐diphenyl carbazide to 1,5‐diphenyl carbazone.The high activity was attributed to the synergetic effects of high charge mobility and the red shift in the absorption edge of the Ag2S‐graphene/TiO2 composites.  相似文献   

15.
The catalytic conversion of 5-hydroxymethylfurfural(HMF) to 2,5-dimethylfuran(DMF) has attracted extensive research interests because DMF can be used as potential and competitive renewable transportation fuel or additives. Here we report a non-noble bimetallic catalyst with improved activity for hydrogenation and hydrogenolysis by introducing active carbon as support into a nickel–cobalt catalyst. The characterizations of the catalyst indicate that the Ni and Co species are uniformly dispersed on the active carbon through the wetness impregnation method. The influences of reaction temperature and hydrogen pressure are systematically investigated and an excellent yield(up to 95%) of DMF can be obtained at relatively mild conditions, 130 °C and 1 MPa H_2, over the carbon supported Ni–Co bimetallic catalyst. The high catalytic activity originates from the synergistic effect between Ni and CoO xspecies, the high BET surface area of the catalyst, and the uniform dispersion of Ni and Co species on the active carbon. The catalyst could be reused for 5 times without loss of activity in a batch reactor. Futhermore, the conversion of HMF to DMF on a fixed-bed reactor was also investigated and the 2%Ni–20%Co/C catalyst exhibited an excellent yield to DMF(90%) for 71 h time on stream, indicating the high activity and stability of the catalyst.  相似文献   

16.
An facile and efficient protocol for the synthesis of 13‐aryl‐indeno[1,2‐b]naphtha[1,2‐e]pyran‐ 12(13H)‐ ones has been developed that proceeds via the one‐pot three‐component sequential reaction of an aromatic aldehyde with β‐naphthol and 2H‐indene‐1,3‐dione under solvent‐free conditions in the presence of a poly(4‐vinylpyridinium)hydrogen sulfate(P(4‐VPH)HSO4) catalyst. The catalyst can be reused several times, making this procedure facile, practical, and sustainable. The simple experimental procedure, solvent‐free reaction conditions, use of an inexpensive catalyst, short react time, and excellent yields are some of the major advantages of this methodology.  相似文献   

17.
A straightforward and general method has been developed for the synthesis of C5-unsubstitiuted 1,4-dihydropyridines by a reaction using dimedone, acetophenone, aromatic aldehydes, and ammonium acetate in the presence of a catalytic amount of Co nanoparticles as a heterogeneous and eco-friendly catalyst with high catalytic activity at room temperature under solvent-free conditions. This catalyst is easily separated by magnetic devices and can be reused without any apparent loss of activity for the reaction. In addition, it is very interesting that when using Co nanoparticles as a catalyst, spatially-hindered aldehydes such as 2-methoxy-, 2-fluoro-, and 2-chloro-aldehydes are suitable for this reaction.  相似文献   

18.
The one‐pot synthesis of a series of 1,2,4‐triazines from the reactions of semicarbazide or thiosemi‐carbazide with various α,β‐dicarbonyl compounds under reflux conditions in a EtOH‐H2O (9:1) mixture as solvent and catalyzed by nano‐sized silica supported FeCl3 (FeCl3@SiO2) was investigat‐ed. The FeCl3 content of the catalyst was measured by atomic absorption to get the adsorption ca‐pacity. The reactions gave high yields of the product and the catalyst was easily separated and re‐used for successive reaction runs without significant loss of activity.  相似文献   

19.
12‐Tungstophosphoric acid supported on aerosil silica and silica‐coated γ‐Fe2O3 nanoparticles was prepared and characterized using transmission electron microscopy,scanning electron microscopy,and inductively coupled plasma atomic emission spectroscopy.The catalytic activity of the two prepared catalysts was compared in the synthesis of 1,8‐dioxo‐9,10‐diaryldecahydroacridines in water.12‐Tungstophosphoric acid was highly dispersed on the silica‐coated γ‐Fe2O3 nanoparticles and showed higher activity and a higher reuse number compared with the acid supported on aerosil silica.The catalyst could be recovered simply by using an external magnetic field and could be reused several times without appreciable loss of its catalytic activity.  相似文献   

20.
7‐Aryl‐8H‐benzo[f]indeno[2,1‐b]quinoline‐8‐one derivatives were synthesized by means of a one‐pot condensation of 2‐naphthylamine, aromatic aldehydes, and indane‐1,3‐dione in ethanol under refluxing conditions in the presence of poly(4‐vinylpyridinium) hydrogen sulfate, a solid acid catalyst. This method has the advantages of high yield, clean reaction, simple methodology, and short reaction time. The catalyst could be recycled and reused four times without significant loss of activity. The structure of the novel compounds was confirmed by IR, 1H NMR, and 13C NMR spec-troscopy and elemental analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号