首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 549 毫秒
1.
The weak fluorescence of N-[P-(2-benzoxazolyl)phenyl]maleimide (BOPM) can be greatly enhanced by thiol-containing compounds. A sensitive and simple spectrofluorimetric method based on the use of BOPM has been developed for the determination of thiols such as cysteine (Cys) and reduced glutathione (GSH). Calibration plots were linear in the concentration range from 0 to 1.6 x 10(-7) mol L(-1) for Cys and 0 to 1.7 x 10(-7) mol L(-1) for GSH. The detection limits (3a) were 2.36 x 10(-10) mol L(-1) for Cys and 1.49 x 10(-10) mol L(-1) for GSH. Many other amino acids (present at 100-fold greater concentrations) did not interfere with the determination. The proposed method has been used for the determination of Cys in protein hydrolysate and cystine electrolyte or GSH in serum, with recoveries of 95.4-103.7%.  相似文献   

2.
Several problems for the direct electrochemical oxidation of reduced glutathione (GSH) challenge the usage of electroanalytical techniques for its determination. In this work, the electrochemical oxidation of GSH catalyzed by gold nanoparticles electrodeposited on Nafion modified carbon paste electrode in 0.04?mol?L?1 universal buffer solution (pH?7.4) is proved successful. The effect of various experimental parameters including pH, scan rate and stability on the voltammetric response of GSH was investigated. At the optimum conditions, the concentration of GSH was determined using differential pulse voltammetry (DPV) in two concentration ranges: 0.1?×?10?7 to 1.6?×?10?5?mol?L?1 and 2.0?×?10?5 to 2.0?×?10?4?mol?L?1 with correlation coefficients 0.9988, 0.9949 and the limit of detections (LOD) are 3.9?×?10?9?mol?L?1 and 8.2?×?10?8?mol?L?1, respectively, which confirmed the sensitivity of the electrode. The high sensitivity, wide linear range, good stability and reproducibility, and the minimal surface fouling make this modified electrode useful for the determination of spiked GSH in urine samples and in tablet with excellent recovery results obtained.  相似文献   

3.
The determination of iron(II) with 1,10-phenanthroline in aqueous solutions was carried out exemplarily by thermal lens spectrometry. The peculiarities of analytical reactions at the nanogram level of reactants can be studied using this method. Under the conditions of the competing reaction of ligand protonation, the overall stability constant for iron(II) chelate with 1,10-phenanthroline was determined at a level of n × 10–7 mol L–1, logβ 3 = 21.3 ± 0.1. The rates of formation and dissociation of iron(II) tris-(1,10-phenanthrolinate) at a level of n × 10–8 mol L–1 were found to be (2.05 ± 0.05) × 10–2 min–1 and (3.0 ± 0.1) × 10–3 min–1, respectively. The conditions for the determination of iron(II) with 1,10-phenanthroline by thermal lensing were reconsidered, and ascorbic acid was shown to be the best reducing agent, which provided minimum and reproducible sample pretreatment. Changes in the conditions at the nanogram level improved both the selectivity and sensitivity of determination. The optimum measurement conditions for thermal lensing were determined not only by the absorption of the analyte and reagents, but also by the background absorption of the solvent. The limits of detection and quantification of iron(II) at 488.0 nm (excitation beam power 140 mW) are 1 × 10–9 and 6 × 10–9 mol L–1, respectively; the reproducibility RSD for the range n × 10–8–n × 10–6 mol L–1 is 2–5%.  相似文献   

4.
The voltammetric behavior of 3‐nitrofluoranthene and 3‐aminofluoranthene was investigated in mixed methanol‐water solutions by differential pulse voltammetry (DPV) at boron doped diamond thin‐film electrode (BDDE). Optimum conditions have been found for determination of 3‐nitrofluoranthene in the concentration range of 2×10?8–1×10?6 mol L?1, and for determination 3‐aminofluorathnene in the concentration range of 2×10?7–1×10?5 mol L?1, respectively. Limits of determination were 3×10?8 mol L?1 (3‐nitrofluoranthene) and 2×10?7 mol L?1 (3‐aminofluoranthene).  相似文献   

5.
A biosensor based on stearic acid-graphite powder modified with sweet potato (Ipomoea batatas (L.) Lam.) tissue as peroxidase source was constructed and applied in organic solvents. Several parameters were studied to evaluate the performance of this biosensor such as stearic acid-graphite powder and tissue composition, type and concentration of supporting electrolyte, organic solvents, water/organic solvent ratio (% v/v) and hydrogen peroxide concentration. After selection of the best conditions, the biosensor was applied for the determination of hydroquinone in cosmetic creams in methanol. At the peroxidase electrode hydroquinone is oxidized in the presence of hydrogen peroxide and the radical formed was reduced back electrochemically at –180 mV vs Ag/AgCl (3.0 mol L–1 KCl). The reduction current obtained was proportional to the concentration of hydroquinone from 6.2 × 10–5 to 1.5 × 10–3 mol L–1 (r = 0.9990) with a detection limit of 8.5 × 10–6 mol L–1. The recovery of hydroquinone from two samples ranged from 98.8 to 104.1% and an RSD lower than 1.0% for a solution containing ¶7.3 × 10–4 mol L–1 hydroquinone and 1.0 × 10–3 mol L–1 hydrogen peroxide in 0.10 mol L–1 tetrabutylammonium bromide methanol-phosphate buffer solution (95:5% v/v) (n = 10) was obtained.  相似文献   

6.
Lin Chang  Ting Wu  Fang Chen 《Mikrochimica acta》2012,177(3-4):295-300
We report on a simple and sensitive method for the determination of L-cysteine (Cys). It is based on a redox reaction between the non-fluorescent Cu(II)-calcein complex and Cys which results in fluorescence recovery of calcein. When Cys is added to a solution of the Cu(II)-calcein complex, Cu(II) is reduced to Cu(I), and calcein is released to form a strongly fluorescent complex with Zn(II). The effect was used to develop a fluorescence enhancement method for the determination of Cys. Under the optimum conditions, the increase in signal intensity is linear in the range from 3.0?×?10?7 to 1.2?×?10?5?mol?L?1, with a correlation coefficient (R) of 0.9978. The limit of detection (3σ) is 4.0?×?10?8?mol?L?1. The relative standard deviation (RSD) in the determination of 11 samples containing 5.0?×?10?6?mol?L?1 of Cys was 3.5%. There is little interference by common ions and other amino acids. The method, which is simple, rapid, and sensitive, was successfully applied to the determination of Cys in human serum samples.
Figure
Calcein is strongly fluorescent in water solution. It could form a non-fluorescent complex with Cu2+. When Cys is added to a solution of the Cu(II)-calcein complex, Cu(II) is reduced to Cu(I), and calcein is released to form a strongly fluorescent complex with Zn(II).  相似文献   

7.
《Electroanalysis》2017,29(7):1691-1699
The simultaneous voltammetric determination of melatonin (MT) and pyridoxine (PY) has been carried out at a cathodically pretreated boron‐doped diamond electrode. By using cyclic voltammetry, a separation of the oxidation peak potentials of both compounds present in mixture was about 0.47 V in Britton‐Robinson buffer, pH 2. The results obtained by square‐wave voltammetry allowed a method to be developed for determination of MT and PY simultaneously in the ranges 1–100 μg mL−1 (4.3×10−6–4.3×10−4 mol L−1) and 10–175 μg mL−1 (4.9×10−5–8.5×10−4 mol L−1), with detection limits of 0.14 μg mL−1 (6.0×10−7 mol L−1) and 1.35 μg mL−1 (6.6×10−6 mol L−1), respectively. The proposed method was successfully to the dietary supplements samples containing these compounds for health‐caring purposes.  相似文献   

8.
A new voltammetric procedure for the simultaneous determination of dopamine (DA) and paracetamol (PA) using boron doped diamond electrode modified with Nafion and lead films (PbF/Nafion/BDDE) was investigated. The use of this electrode resolved the overlapped voltammetric waves of DA and PA into well‐defined peaks with peak to peak separation of about 320 mV. Under the optimized experimental conditions in differential pulse voltammetric technique, DA and PA gave a linear response over the ranges 2.0×10?7–1.0×10?4 mol L?1*(R2=0.9996) and 5.0×10?7–1.0×10?3 mol L?1 (R2=0.9979), respectively. The detection limits were found to be 5.4×10?8 mol L?1 for DA and 1.4×10?7 mol L?1 for PA. They are lower, comparable or in some cases a little bit higher than those obtained using other electrochemical sensors. However, the proposed procedure of the sensor preparation is much simpler than procedures described in the literature with a lower detection limit. The proposed procedure was successfully applied to the determination of PA in some commercial pharmaceuticals as well as to the simultaneous determination of DA and PA in human urine, whole blood and serum samples directly without any separation steps.  相似文献   

9.
A simple and reliable novel kinetic method for the determination of piroxicam (PX) was proposed and validated. For quantitative determination of PX, the Bray-Liebhafsky (BL) oscillatory reaction was used in a stable non-equilibrium stationary state close to the bifurcation point. Under the optimized reaction conditions (T = 55.0°C, [H2SO4]0 = 7.60×10?2 mol L?1, [KIO3]0 = 5.90×10?2 mol L?1, [H2O2]0 = 1.50×10?1 mol L?1 and j 0 = 2.95×10?2 min?1), the linear relationship between maximal potential shift ΔE m , and PX concentration was obtained in the concentration range 11.2–480.5 μg mL?1 with a detection limit of 9.9 μg mL?1. The method had a rather good sample throughput of 25 samples h?1 with a precision RSD = 4.7% as well as recoveries RCV ≤ 104.4%. Applicability of the proposed method to the direct determination of piroxicam in different pharmaceutical formulations (tablets, ampoules and gel) was demonstrated.   相似文献   

10.
An efficient voltammetric method was developed for the determination of maleic acid at a silver amalgam paste electrode (AgA‐PE) in Britton–Robinson buffer pH 2.0. The experimental parameters, such as pH of Britton–Robinson buffer, type of the supporting electrolyte and activation of the electrode surface were optimized. Under the optimal conditions, a linear response was observed over the 2×10?6–1×10?4 mol L?1 maleic acid concentration range, determination limit being 5×10?7 mol L?1. A highly stable response, with a relative standard deviation (RSD) of 1.6% for 45 repetitive measurements of 1×10?4 mol L?1 maleic acid showed that there was no apparent surface passivation indicating the suitability of the method. The method was successfully applied for direct determination of maleic acid in drinking and river water.  相似文献   

11.
A reliable and highly sensitive method for the determination of hesperidin is described. It involves the formation of a highly fluorescent complex between hesperidin and aluminium (III) in a micellar medium. There is a linear relationship between fluorescence intensity (λem = 496 nm, λex = 391 nm) and hesperidin concentration over the range 5 × 10–7– 2 × 10–5 mol L–1. The detection limit is 79 μg L–1. The method can easily be adapted to a flow system using a three-channel manifold, the peak height being proportional to the hesperidin concentration over the range 1 × 10–6– 1 × 10–4 mol L–1. Manual and flow-injection procedures have been successfully applied to the determination of hesperidin in orange peel and orange juice.  相似文献   

12.
Silicon dioxide nanoparticles modified carbon paste electrode was fabricated and used for electrochemical investigation of tryptophan. Compared with the unmodified electrode, the peak current significantly increased. Experimental conditions for tryptophan determination were optimized. Linear relationship between the peak current and tryptophan concentration was obtained in the range of 1.0 × 10?7?5.0 × 10?6 mol L?1 and 5.0 × 10?6?5.0 × 10?5 mol L?1 with an estimated detection limit of 3.6 × 10?8 mol L?1 (S/N = 3). Tryptophan in pharmaceutical and human serum samples were successfully determined by the proposed method.  相似文献   

13.
A new macrocyclic ligand, 1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid)(dipon), is selective complexing agent for copper(II) over other transition metal ions. The ligand was tested for analytical applications of copper(II) determination. Spectrophotometric determination under optimal experimental conditions (?log [H+]= 5.5, c L≈ 5 × 10?4 mol L?1, λ= 310 nm) is valid in dynamic range (5–200)× 10?6 mol L?1 with detection limit 2.2 × 10?6 mol L?1, i.e. 0.14 μg ml?1. Volumetric determination of copper(II) with standardized dipon solution was used for copper(II) determination at micromolar concentration level without any necessity to sequester interfering metal ions. A sharp end point of titration was detected by UV/VIS spectrophotometry. Both methods were tested on artificial and real samples (spiked mineral water, alloys) and gave satisfactory results without any systematic error. The advantage of both methods is their simplicity, rapidity and no sensitivity to the presence of other metal ions.  相似文献   

14.
A simple and sensitive method for simultaneously measuring dopamine (DA), ascorbic acid (AA), and uric acid (UA) using a poly(1‐aminoanthracene) and carbon nanotubes nanocomposite electrode is presented. The experimental parameters for composite film synthesis as well as the variables related to simultaneous determination of DA, AA, and UA were optimized at the same time using fractional factorial and Doehlert designs. The use of carbon nanotubes and poly(1‐aminoanthracene) in association with a cathodic pretreatment led to three well‐defined oxidation peaks at potentials around ?0.039, 0.180 and 0.351 V (vs. Ag/AgCl) for AA, DA, and UA, respectively. Using differential pulse voltammetry, calibration curves for AA, DA, and UA were obtained over the range of 0.16–3.12×10?3 mol L?1, 3.54–136×10?6 mol L?1, and 0.76–2.92×10?3 mol L?1, with detection limits of 3.95×10?5 mol L?1, 2.90×10?7 mol L?1, and 4.22×10?5 mol L?1, respectively. The proposed method was successfully applied to determine DA, AA, and UA in biological samples with good results.  相似文献   

15.
Multivariate curve resolution with alternating least squares (MCR-ALS) has been applied to voltammetric data obtained from analysis of the competitive binding of cysteine (Cys) and cysteine–glycine (Cys-Gly) by Cd(II) as a first approach towards mixtures of phytochelatins and related compounds in natural media. From different starting points, the possibilities of formation of mixed complexes and/or displacements between ligands are investigated. Analysis of the resulting unitary voltammograms and concentration profiles of the resolved components by MCR-ALS suggests that the strongest ligand (Cys-Gly) is able to displace the weakest (Cys) from its metal complexes, whereas this does not happen in the opposite direction. On the other hand, no evidence of Cd mixed-ligand complexes was found. Figure Differential pulse polarograms measured in the independent titrations of 1 × 10-5 mol L-1 Cys, 1 × 10-5 mol L-1 Cys-Gly, and a mixture of Cys-Gly (0.5 × 10-5 mol L-1) and Cys (1 × 10-5 mol L-1) with Cd2+, at TRIS-HNO3 buffer (0.1 mol L-1 and PH 7.5) in the presence of 0.1 mol L-1 KNO3  相似文献   

16.
In this paper, gold microelectrode array (Au‐MEA) were employed to determination of ethambutol in aqueous medium. Au‐MEA was constructed with an electronic microchip integrated circuit. The standard curve (analytical curve) was constructed for a single microelectrode (ME) in a concentration range of 5.0×10?5 to 2.0×10?3 mol L?1, allowing estimation of both the limit of detection (LOD) (4.73×10?5 mol L?1) and the limit of quantification (LOQ) (1.57×10?4 mol L?1) for ethambutol. When the MEA was utilized, the LOD and LOQ were 1.55×10?7 and 5.18×10?7 mol L?1, respectively. Our results indicated that Au‐MEA can be utilized as amperometric sensors for ethambutol determination in aqueous media.  相似文献   

17.
《Analytical letters》2012,45(4):697-707
Abstract

The preparation of a gold electrode modified by aminylferrocene (FcAI) covalently bound to L‐cysteine self‐assembled monolayer (L‐Cys/Au SAM) was described, and characterized by cyclic voltammogram (CV) and electrochemical impedance spectroscopy (EIS). In pH 7.4 buffers, FcAI incorporated in L‐Cys/Au SAM gave a pair of well‐defined and quasi‐reversible cyclic voltammetric peaks at 0.109 vs. saturated calomel eletrode (SCE), characteristic of Fe(II)/Fe(III) redox couples of the Fc. The apparent surface electron transfer rate constant is 6.86 s?1 at the modified electrode. The immobilized Fc gave an excellent electrocatalytic activity for the oxidation of epinephrine (EP). The catalytic current of EP vs. its concentration has a good linear relation in the range of 1.7×10?7–1.0×10?4 mol/L, with the correlation coefficient of 0.9975 and detection limit of 1.8×10?8 mol/L. The modified electrode can be used for the determination of EP in practical injection. The method is simple, quick, sensitive, and accurate.  相似文献   

18.
We report in this work, for the first time, the voltammetric study and the development of an electroanalytical method for the determination of sodium diethyldithiocarbamate (Na-DDC) using solid amalgam electrode fabricated with silver nanoparticles. The experimental parameters were studied and the best voltammetric response was reached when using 0.02 mol L–1 Britton–Robinson buffer (pH = 5.5). Cyclic voltammograms of the substance presented two voltammetric signals: one cathodic peak at Ep = – 0.55 V and one anodic peak at Ep = – 0.49 V. The redox process of Na-DDC showed itself as an adsorption-controlled and quasi-reversible system. A mechanism for this electrochemical reaction was proposed. The analytical studies employed square-wave adsorptive stripping voltammetry (SWAdSV) and were based on the cathodic signal given by Na-DDC. Good linearity was observed in the concentration range from 2.83 × 10–7 mol L–1 to 6.89 × 10–6 mol L–1. The obtained limit of detection was 7.26 × 10–8 mol L–1. The electroanalytical approach described here was successfully employed for the determination of Na-DDC in river water at levels of concentration from 1.46 × 10–7 mol L–1 to 1.46 × 10–6 mol L–1 with good repeatability and reproducibility (RSD values of 4.2% and 5.9%, respectively). The values found during these determinations presented good concordance when compared with the expected values. According to the data presented here, the solid amalgam electrode fabricated with silver nanoparticles may be seen as an effective and green tool for the electrochemical analysis of Na-DDC and also other reducible compounds that usually require mercury-based electrode surfaces.  相似文献   

19.
A new thiol fluorescence probe, 5-maleimidyl-2-(m-methylphenyl)benzoxazole (MMPB) has been developed for the direct determination of reduced glutathione (GSH) in real samples. Compared to the reported N-substituted maleimide type of thiol reagents, the main advantage of MMPB is its rather high selectivity for GSH to cysteine (Cys), which often coexists with GSH in biological samples. Under mild conditions similar to the physiological environment, MMPB reacted with GSH to give a highly fluorescent derivative with the excitation and emission wavelengths of 299.2 and 355.8 nm, respectively. In the presence of 0.40-fold (molar ratio) of Cys, a linear relationship was found in the range of 0-1.62×10−7 mol l−1 with the detection limit (3σ) of 3.23×10−10 mol l−1 for GSH determination. Many other amino acids (100-fold) did not interfere with the determination. Since the molar ratio of Cys to GSH in mammalian tissues and blood does not exceed the value of 0.40:1, the proposed method has been used in the direct determination of GSH in these kinds of biological samples, such as human blood, pig’s liver and heart with the recoveries of 94.3-104.5%  相似文献   

20.
A method is described for determination of fenbufen that is based on the chemiluminescence (CL) reaction of the ${\text{Ru}}\left( {{\text{phen}}} \right)_3^{2 + } $ –cerium(IV)–fenbufen system. An enhanced CL reaction was developed, and optimum conditions for CL were investigated. The CL was linearly dependent on fenbufen concentration in the range 4.0?×?10?8–9.0?×?10?6 mol L?1. The detection limit was 2.0?×?10?8 mol L?1. The relative standard deviation (RSD) was 2.8% for eleven measurements of 6.0?×?10?7 mol L?1 fenbufen standard solution. The new method enables simple, sensitive, and rapid determination of fenbufen and has been used for determination of fenbufen in pharmaceutical preparations in capsule, spiked serum and urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号