首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为获得水质样品中的溶解态汞简便、灵敏的测定方法,以含有荧光基团和氨基活性基团的对苯二胺作为荧光探针,基于其荧光猝灭程度与Hg(Ⅱ)浓度呈线性关系,建立荧光光度法测定水质样品中溶解态汞的检测方法。对缓冲体系的类型、pH值、浓度以及荧光探针的浓度等条件进行实验,确定采用pH 5.0的0.010 mol/L AABS体系和0.40 μg/mL对苯二胺荧光探针的荧光探针实验条件,并应用于实际水质样品中。结果表明,当Hg(Ⅱ)浓度在0.64 μg/mL ~1.36μg/mL内,荧光探针对苯二胺浓度的荧光淬灭程度与Hg(Ⅱ)浓度成良好的线性关系(R=0.9991),重复性实验的相对标准偏差为0.72 %,方法检出限为0.032 μg/mL,加标回收率均在90%~110%之间。该方法简便、灵敏度高、选择性好、可用于实际水质样品中溶解态汞的测定,具有较好的应用前景。  相似文献   

2.
以巯基乙酸为稳定剂,在水溶液中合成CdTe/CdS量子点,基于量子点与Cu2+混合后发生荧光猝灭作用,建立CdTe/CdS量子点作为荧光探针检测微量铜的新方法。在pH 4.60的HAc-NaAc缓冲溶液中,反应时间为10 min时,Cu2+质量浓度在0.01~1.00μg/mL范围与CdTe/CdS量子点的荧光猝灭程度呈良好的线性关系,相关系数为0.9978,检出限为9.90×10-3μg/mL。方法可以用于雨水、自来水和延河水中Cu2+的分析。  相似文献   

3.
研究了Cu2+对硫堇(TH)荧光光谱的影响,发现Cu2+对TH的荧光有猝灭作用。为了消除瑞利散射的干扰,进一步考察了Cu2+对TH同步荧光(Δλ=4~12 nm)的猝灭情况,并确定λex为626 nm,λem为635 nm(Δλ=9 nm)为工作波长。在同步荧光猝灭度(ΔF)与Cu2+质量浓度(ρCu2+)之间呈良好的线性关系,并据此建立了测定Cu2+的新方法。Cu2+的线性范围0.0133~0.975μg/mL,检出限为0.004μg/mL,加标回收率为97.4%~104.2%。该方法可用于自来水和矿泉水中痕量铜的测定。  相似文献   

4.
以微波法合成的碳量子点为荧光探针,建立了测定Cd2+的荧光猝灭法。在pH 4.0的乙酸-乙酸钠缓冲溶液中,体系荧光猝灭强度和Cd2+浓度呈线性关系,线性回归方程为ΔF=0.1598ρ+8.1781,相关系数为0.9982,线性范围为1.0~500μg/L,检出限为0.5μg/L,相对标准偏差为1.3%,回收率为98.6%~101.6%。方法已用于环境水中痕量Cd的测定。  相似文献   

5.
利用阿莫西林与Cu2+络合导致Cu2+对核固红的荧光猝灭程度减弱的特性,建立了荧光增强分析法检测阿莫西林含量的新方法。讨论了体系的紫外-可见吸收光谱、荧光光谱以及酸度、试剂浓度、反应温度、反应时间和离子强度等因素对体系荧光强度的影响。在最佳实验条件下,荧光强度的增强程度与阿莫西林质量浓度呈线性关系,线性范围为0.40~15.0μg/mL,检出限为0.29μg/mL。考察了一些金属离子和药物赋型物对体系的影响。将方法用于市售阿莫西林胶囊分析,回收率在100.4%~103.4%之间。  相似文献   

6.
在pH 8.4的溶液中,碳量子点(Carbon quantum dots,CQDs)和荧光桃红(Fluorescent pink,FP)之间发生荧光共振而使后者的荧光增强。体系中加入痕量Cu2+后,FP的荧光被猝灭,且在一定范围内体系的荧光猝灭程度与Cu2+浓度呈良好的线性关系。据此建立了荧光猝灭法测定河水、农田水、自来水中痕量Cu2+的新方法。方法的线性范围为9.42~23.55μmol/L,检出限(3σ/k)为3.14μmol/L。将该方法应用于河水、农田水及自来水中Cu2+的检测,其相对标准偏差(RSD)不大于0.91%,加标回收率为98.7%~99.0%,结果令人满意。  相似文献   

7.
以一步水热法合成的强荧光性花生壳碳点(PE-CDs)为荧光探针,建立了简单、灵敏快速检测饮料中着色剂日落黄和柠檬黄的方法。日落黄和柠檬黄分别与荧光PE-CDs结合发生静态猝灭作用。在最优条件下,日落黄溶液浓度在6.8~1130μg/mL、柠檬黄溶液浓度在0.2~50μg/mL范围内,都与PE-CDs的荧光猝灭程度呈良好的线性关系,检出限分别为9.3 ng/mL和0.38 ng/mL。对饮料样品中的日落黄和柠檬黄进行测定,回收率分别为96.3%~105.0%和95.0%~106.7%。  相似文献   

8.
基于碳量子点溶液荧光被汞离子猝灭后加入三聚氰胺又能恢复荧光的特性建立了一种测定三聚氰胺的简易方法。研究了碳量子点、碳量子点-Hg~(2+)和碳量子点-Hg~(2+)-三聚氰胺体系的Zeta电位,提出了该测试体系荧光猝灭与恢复是由碳量子点表面电荷改变引起的机理。研究了碳量子点浓度、猝灭剂汞离子用量、溶液pH、反应时间等因素对测定体系荧光猝灭与恢复的影响,确定了最佳测定条件。在最佳测定条件下,三聚氰胺在0.05~4.0μg/mL浓度范围内与体系荧光恢复程度呈线性关系,其线性方程为:y=1.135+0.9673c,线性相关系数R~2=0.9966,检出限为0.01μg/mL,能满足实际样品中三聚氰胺检测的要求。  相似文献   

9.
以巯基乙酸为稳定剂,在水溶液中合成了CdTe/CdS量子点(QDs),并基于QDs与锑混合后发生荧光猝灭作用,建立了以CdTe/CdS QDs作为荧光探针检测微量锑的新方法。研究表明,在pH值为4.80的柠檬酸-柠檬酸钠中,反应时间为10min时,锑浓度在0.03~2.50μg/mL范围与CdTe/CdS QDs的荧光猝灭程度呈良好的线性关系,相关系数为0.9969,检出限为2.60×10-3μg/mL。  相似文献   

10.
采用水热法,使用碳源蛋白胨制得荧光碳量子点(CQDs)。使用透射电镜、X射线光电子能谱(XPS)和红外光谱对其进行了表征。该CQDs溶液的荧光能够被Cu2+猝灭,草酸能够使CQDs的荧光恢复。据此建立了碳量子点“关-开”型荧光探针测定草酸的新方法。荧光恢复程度与草酸浓度在8~65μg/mL范围内呈线性关系,检出限为1.8μg/mL。通过紫外光谱、荧光光谱和荧光寿命探究了CQDs对草酸的荧光响应机理。Cu2+能够对CQDs的荧光产生动态猝灭,C2O42-与Cu2+结合,减少了溶液中游离的Cu2+,导致CQDs的荧光恢复。该方法可用于实际样品西红柿和圣女果中草酸的分析检测。  相似文献   

11.
《Tetrahedron: Asymmetry》2014,25(12):865-922
This review discusses methods for the metallo-, organo- and biocatalytic asymmetric synthesis of chiral organophosphorus compounds with many applications in stereoselective synthesis with references to updated literature reports as well as the author’s original research. Asymmetric catalytic hydrogenation and reduction with chiral organometallic complexes, together with actively used asymmetric organocatalytic versions of various reactions enable us to synthesize chiral organophosphonates and phosphinates with high enantioselectivity and purity. Asymmetric catalysis is also an effective tool to realize some classic reactions of phosphorus chemistry in a stereospecific manner.  相似文献   

12.
Many peptides and proteins, containing Nα-alkylamino acids (including proline) at the second position, are prone to intramolecular aminolysis (IA) with elimination of N-terminal dipeptide sequence as 2,5-diketopiperazines (DKP). We synthesized a series of short peptides, containing N-alkylamino acids at position 2, and studied their stability in the presence of acetic acid and amines. The presence of side chains in the second and the third amino acid residues and alkylation at Nα of the third amino acid residue slowed down IA. Nα-Alkyl residue in the first amino acid residue impeded IA only in peptides, containing three or more residues. Side chains of the first amino acids did not affect significantly the cleavage rates. Acetic acid promoted IA more strongly than aqueous ammonia, while tertiary amines were less effective. Peptides with methionine-S-oxide residues were more labile than the unoxidized analogs, suggesting intramolecular assistance of the S-oxide group in aminolysis. Surprisingly, intermediate compounds of the formula Boc–Met-MeXaa-Sar–NHR underwent rapid cleavage (endopeptolysis) upon attempted acidolytic deprotection.  相似文献   

13.
《Comptes Rendus Chimie》2015,18(4):430-437
The in vitro antimicrobial and antioxidant activities of metal complexes derived from 1,8-diaminonaphthalene and 5,5-dimethylcyclohexane-1,3-dione were evaluated. The complexes were synthesized by template method in the presence of trivalent metal salts, resulting in the formation of tetraaza macrocyclic complexes of the type [M (C36H36N4) X] X2, where M = Cr(III), Fe(III) and X = Cl, NO3, CH3COO. The synthesized complexes were characterized with the aid of elemental analyses, molar conductance measurements, magnetic susceptibility measurements, electronic, IR, mass and powder XRD studies. Based on various studies, a five-coordinated square pyramidal geometry was proposed for these complexes. The X-ray diffraction studies suggest a monoclinic crystal system for the complexes.  相似文献   

14.
Carotenoids are essential pigments in natural photosynthesis. They absorb in the blue–green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This process is an example of singlet–singlet energy transfer and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. In this case, triplet–triplet energy transfer from (bacterio-)chlorophyll to carotenoid plays a key role in this photoprotective reaction. In the light-harvesting pigment–protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role, namely the structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined to provide a basis from which to describe the photochemistry of carotenoids, which underlies most of their important functions in photosynthesis. Then, the possibility to utilize the functions of carotenoids in artificial photosynthetic light-harvesting systems will be discussed. Some examples of the model systems are introduced.  相似文献   

15.
Chagas is a parasitic disease with major threat to public health due to its resistance against commonly available drugs. Trypanothione reductase (TryR) is the key enzyme to develop this disease. Though this enzyme is well thought-out as potential drug target, the accurate structure of enzyme-inhibitor complex is required to design a potential inhibitor which is less available for TryR. In this research, we aimed to investigate the advanced drug over the available existing drugs by designing inhibitors as well as to identify a new enzyme-inhibitor complex that may act as a template for drug design. A set of analogues were designed from a known inhibitor Quinacrine Mustard (QUM) to identify the effective inhibitor against this enzyme. Further, the pharmacoinformatics elucidation and structural properties of designed inhibitor proposed effective drug candidates against Chagas disease. Molecular docking study suggests that a designed inhibitor has higher binding affinity in both crystal and modeled TryR and also poses similar interacting residues as of crystal TryR-QUM complex structure. The comparative studies based on in silico prediction proposed an enzyme-inhibitor complex which could be effective to control the disease activity. So our in silico analysis based on TryR built model, Pharmacophore and docking analysis might play an important role for the development of novel therapy for Chagas disease. But both animal model experiments and clinical trials must be done to confirm the efficacy of the therapy.  相似文献   

16.
Light driven reactions are perpetual tools for environment sustainability. As an external trigger, most of the photon driven reactions are stereoselective, precise, efficient and offer temporal control for biomolecules. The photoinduced reactions are key to unique molecular transformations that include click and unclick reactions. Since 2003, there has been an exponential rise research papers citing light driven reactions. This review considers the light promoted development and modification of reactions that fall under the criteria of ‘Click’ series of transformations. The review lays emphasis on the light induced biochemical, carbohydrate modification, surface labelling, bioconjugation, polymer modification, dendrimer synthesis, [4 + 2] and [2 + 2] reaction, thiol–ene/yne coupling, Cu assisted cycloaddition, strain-promoted azide alkyne cycloaddition (SPAAC), nitro photoclick and photounclick reactions published in last one and half decade. This series of photoclick reactions use short wavelength radiations and are instant, clean, and near to perfect for transforming reactants to the desirable products.  相似文献   

17.
18.
Natural rubber/polycaprolactone (NR/PCL) bio-based blends with different organic peroxides were prepared using an internal batch mixer and subsequently cross-linked at 170 °C. Two types of commonly used organic peroxides, dicumyl peroxide and di(tert-butylperoxyisopropyl)benzene peroxide, were applied as free-radical initiator. Cross-linking efficiency of NR/PCL blends were investigated using oscillating disc rheometer measurements, followed by infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis and tensile testing. Total volatile organic compounds (TVOCs) emissions were determined using headspace analysis integrated with gas chromatography with flame ionization detector. Determined TVOCs emissions varying in range 21.6–52.1 μg/g and generally value of this parameter decreased with increasing content of PCL phase in studied blends or with application of more efficient di(tert-butylperoxyisopropyl)benzene peroxide as cross-linking agent. It was found that increasing of TVOCs parameter indicated deterioration of mechanical properties of NR/PCL blends, which corresponded with the changes in chemical structure and thermal properties of cross-linked NR/PCL. This confirms that evaluation of TVOCs parameter is interesting alternative for “conventional methods” to characterization of the studied bio-based blends.  相似文献   

19.
A highly efficient black TiO2-Ag photocatalytic nanocomposite, active under both UV and visible light illumination, was synthesized by decorating the surface of 25 nm TiO2 particles with Ag nanoparticles. The material was obtained via a rapid, one-pot, simple (surfactant and complexing agent free) chemical reduction method using silver nitrate and formaldehyde as a metal salt and reducing agent, respectively. The nanocomposite shows an increase of over 800% in the rate of photocatalytic methylene blue dye degradation, compared to commercial unmodified TiO2, under UV-VIS illumination. Unlike pure TiO2, the nanocomposite exhibits visible light activation, with a corresponding drop in optical reflectance from 100% to less than 10%. The photocatalytic properties were shown to be strongly enhanced by post-reduction annealing heat treatments in air, which were observed to decrease, rather than coarsen, silver particle size, and increase particle distribution. This, accompanied by a variation in the silver surface oxidation states, appear to dramatically affect the photocatalytic efficiency under both UV and visible light. This highly active photocatalyst could have wide ranging applications in water and air pollution remediation and solar fuel production.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (BaP), are ubiquitous environmental contaminants that are implicated in causing lung cancer. BaP is a component of tobacco smoke that is transformed enzymatically to active forms that interact with DNA. We reported previously development of a sensitive stable isotope dilution LC/MS method for analysis of BaP metabolites. We now report efficient syntheses of 13C4-BaP and the complete set of its 13C4-labelled oxidized metabolites needed as internal standards They include the metabolites not involved in carcinogenesis (Group A) and the metabolites implicated in initiation of cancer (Group B). The synthetic approach is novel, entailing use of Pd-catalyzed Suzuki, Sonogashira, and Hartwig cross-coupling reactions combined with PtCl2-catalyzed cyclization of acetylenic compounds. This synthetic method requires fewer steps, employs milder conditions, and product isolation is simpler than conventional methods of PAH synthesis. The syntheses of 13C4-BaP and 13C4-BaP-8-ol each require only four steps, and the 13C-atoms are all introduced in a single step. 13C4-BaP-8-ol serves as the synthetic precursor of all the oxidized metabolites of 13C-BaP implicated in initiation of cancer. The isotopic purities of the synthetic 13C4-BaP metabolites were estimated to be ≥99.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号