首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six heteroleptic dipyrrinato complexes [Ni(fcdpm)(dedtc)] (1), [Ni(fcdpm)(dipdtc)] (2), [Ni(fcdpm)(dbdtc)] (3), [Pd(fcdpm)(dedtc)] (4), [Pd(fcdpm)(dipdtc)] (5), and [Pd(fcdpm)(dbdtc)] (6) (fcdpm = 5-ferrocenyldipyrromethene; dedtc = diethyldithiocarbamate; dipdtc = diisopropyldithiocarbamate; dbdtc = dibutyldithiocarbamate) have been synthesized and characterized by elemental analyses and spectral (ESI-MS, IR, (1)H, (13)C NMR, UV-vis) and electrochemical studies. Crystal structures of 1, 2, 4, and 5 have been authenticated by X-ray single-crystal analyses. Nickel-based complexes 1-3 display selective chromogenic and redox sensing for Hg(2+) and Pb(2+) ions, while palladium complexes 4-6 display selective chromogenic and redox sensing only for Hg(2+). Electronic absorption, ESI-MS, and electrochemical studies indicated that sensing arises from interaction between 1-3 and Hg(2+)/Pb(2+) through sulfur of the coordinated dithiocarbamates, while it arises from the pyrrolic nitrogen of fcdpm and dithiocarbamate sulfur from 4-6 and Hg(2+). Different modes of binding between Ni and Pd complexes have further been supported by theoretical studies. The receptor-cation binding constants (K(a)) and stoichiometry between probes and Hg(2+)/Pb(2+) have been estimated by the Benesi-Hildebrand method and Job's plot analysis. Detection limits for 1-3 toward Hg(2+)/Pb(2+) and 4-6 for Hg(2+) have been found to be reasonably high.  相似文献   

2.
The synthesis and electrochemical, optical, and ion-sensing properties of ferrocene-imidazophenazine dyads are presented. Dyad 4 behaves as a highly selective chemosensor molecule for Pb(2+) cations in CH(3)-CN/H(2)O (9:1). The emission spectrum (λ(exc) = 317 nm) undergoes an important chelation-enhanced fluorescence effect (CHEF = 47) in the presence of Pb(2+) cations, a new low-energy band appeared at 502 nm, in its UV/vis spectrun, and the oxidation redox peak is anodically shifted (ΔE(1/2) = 230 mV). The presence of Hg(2+) cations also induced a perturbation of the redox potencial although in less extension than those found with Pb(2+) cations. Dyad 7, bearing two fused pyridine rings, has shown its ability for sensing Hg(2+) cations selectively through three channels: electrochemical, optical, and fluorescent; the oxidation redox peak is anodically shifted (ΔE(1/2) = 200 mV), a new low-energy band of the absorption spectrum appeared at 485 nm, and the emission spectrum (λ(exc) = 340 nm) is red-shifted by 32 nm accompanied by a remarkable chelation-enhanced fluorescent effect (CHEF = 165). Linear sweep voltammetry revealed that Cu(2+) cations induced oxidation of the ferrocene unit in both dyads. (1)H NMR studies have been carried out to obtain information about the molecular sites which are involved in the binding process.  相似文献   

3.
A new fluoroionophore [E-4,4'-di(N-(2-pyridyl)amino)stilbene, E1] with a donor-acceptor-donor framework, which features a central stilbene (acceptor) fluorophore and two terminal pyridylamino (donor) ionophores, is reported. The probe displays an ultrasensitive fluorescence quenching response toward Hg(2+) in H(2)O/THF. Coordination of Hg(2+) to E1 affords a 2:1 complex, enabling the detection of Hg(2+) at a concentration as low as 4.4 × 10(-14) M. The interactions between the two species have been thoroughly characterized with UV-vis absorption spectroscopy, fluorescence spectroscopy, and nuclear magnetic resonance spectroscopy. Density functional theory calculations provide further insights into the nature of the fluorescence quenching response. In contrast, a fluorescent molecule with the donor-acceptor architecture, E-4-(N-(2-pyridyl)amino)stilbene (E4), exhibits a greatly attenuated fluorescence quenching response toward Hg(2+).  相似文献   

4.
Experimental results taken from both the condensed and gaseous phase show that, when associated with water, the three dications Sn(2+), Pb(2+), and Hg(2+) exhibit a facile proton-transfer reaction. In the gas phase, no stable [M.(H(2)O)(n)](2+) ions are observed; but instead the cations appear to undergo rapid hydrolysis to give ions of the form M(+)OH(H(2)O)(n-1). A series of ab initio calculations have been undertaken on the structures and proton-transfer reaction profiles associated with the complexes [M.(H(2)O)(2,4)](2+), where M is one of Sn, Pb, Hg, and Ca. The latter has been used as a reference point both in terms of comparisons with previous calculations, and the fact that Ca(2+) is a very weak acid. The calculations show that for Sn(2+), Pb(2+), and Hg(2+), the only barriers to proton transfer are those associated with the movement of water molecules. In the gas phase, these barriers could be overcome through energy gained during ion formation, and in the condensed phase the thermal motion of water molecules would be sufficient. In contrast, the calculations show that for Ca(2+) it is the proton-transfer step that provides the most significant reaction barrier. Proton transfer in Sn(2+) and Pb(2+) is further assisted by distortions in the geometries of [M.(H(2)O)(2,4)](2+) complexes due to voids created by the 5s(2) (6s(2)) inert lone pair. For Hg(2+), ease of proton transfer is derived partly from the high degree of covalent bonding found in both the reactants and products.  相似文献   

5.
The compound bis[1,1'-N,N'-(2-picolyl)aminomethyl]ferrocene, L(1), was synthesized. The protonation constants of this ligand and the stability constants of its complexes with Ni(2+), Cu(2+), Zn(2+), Cd(2+) and Pb(2+) were determined in aqueous solution by potentiometric methods at 25 degrees C and at ionic strength 0.10 mol dm(-3) in KNO(3). The compound L(1) forms only 1:1 (M:L) complexes with Pb(2+) and Cd(2+) while with Ni(2+) and Cu(2+) species of 2 [ratio] 1 ratio were also found. The complexing behaviour of L(1) is regulated by the constraint imposed by the ferrocene in its backbone, leading to lower values of stability constants for complexes of the divalent first row transition metals when compared with related ligands. However, the differences in stability are smaller for the larger metal ions. The structure of the copper complex with L(1) was determined by single-crystal X-ray diffraction and shows that a species of 2:2 ratio is formed. The two copper centres display distorted octahedral geometries and are linked through the two L(1) bridges at a long distance of 8.781(10) Angstrom. The electrochemical behaviour of L(1) was studied in the presence of Ni(2+), Cu(2+), Zn(2+), Cd(2+) and Pb(2+), showing that upon complexation the ferrocene-ferrocenium half-wave potential shifts anodically in relation to that of the free ligand. The maximum electrochemical shift ([capital Delta]E(1/2)) of 268 mV was found in the presence of Pb(2+), followed by Cu(2+)(218 mV), Ni(2+)(152 mV), Zn(2+)(111 mV) and Cd(2+)(110 mV). Moreover, L(1) is able to electrochemically and selectively sense Cu(2+) in the presence of a large excess of the other transition metal cations studied.  相似文献   

6.
Dhir A  Bhalla V  Kumar M 《Organic letters》2008,10(21):4891-4894
A new fluorescent chemosensor based on the calix[4]arene of partial cone conformation possessing a dansyl moiety has been synthesized. The chemosensor demonstrates selective optical recognition of Hg(2+) and Cu(2+) in two contrasting modes. The receptor exhibited ratiometric sensing of Hg(2+) and "ON-OFF" type of fluorescence behavior in the presence of Cu(2+). The compound behaves as a fluorescent molecular switch upon chemical inputs of Hg(2+) and Cu(2+) ions.  相似文献   

7.
Amide linked lower rim 1,3-dibenzimidazole derivative of calix[4]arene, L has been shown to be sensitive and selective to Hg(2+) in aqueous acetonitrile solution based on fluorescence spectroscopy, and the stoichiometry of the complexed species has been found to be 1:1. The selectivity of L toward Hg(2+) has been shown among 11 M(2+) ions, viz., Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), Ca(2+), and Mg(2+) studied, including those of the mercury group and none of these ions impede the recognition of Hg(2+) by L. Role of the solvent on the recognition of Hg(2+) has been demonstrated. The role of calix[4]arene platform and the benzimidazole moieties in the recognition of Hg(2+) by L has been delineated upon performing such studies with five different molecules of relevance as reference molecular systems. The binding cores formed by the receptor L and the reference compounds have been established based on the single crystal XRD structures, and the preferential metal ion binding cores have been discussed. The binding of Hg(2+) with L has been further established based on (1)H and (13)C NMR, ESI MS, absorption, and fluorescence lifetime measurements. Some of these techniques have been used to establish the stoichiometry of the species formed. The complex species formed between L and Hg(2+) have been isolated and characterized and found to be 1:1 species even in the isolated complex. Whereas transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) provided the nanostructural behavior of L, the TEM and SEM demonstrated that the mercury complex has different characteristics when compared to L. The TEM, SEM, and powder XRD studies revealed that whereas L is crystalline, that of the mercury complex is not, perhaps a reason for not being able to obtain single crystals of the complex. Binding characteristics of Hg(2+) toward L have been established based on the DFT computational calculations.  相似文献   

8.
The synthesis, electrochemical, optical, and cation-sensing properties of ferrocene-pentakis(phenylthio)benzene dyads, linked through a putative cation-binding 2-azadiene bridge, are presented. Dyad 5 behaves as a highly selective dual-redox and chromogenic chemosensor molecule for Pb(2+) cations; the oxidation redox peak is anodically shifted (DeltaE(1/2) = 125 mV), and the low energy band of the absorption spectrum is red-shifted (Delta lambda = 119 nm) upon complexation with this metal cation. Linear sweep voltammetry and spectroelectrochemical studies revealed that Cu(2+) and Hg(2+) metal cations induced oxidation of the ferrocene unit. The isomeric dyad 7, in which the nitrogen atom and the ferrocene unit are in closer proximity, has shown its ability for sensing both Pb(2+) and Hg(2+) ions; the oxidation redox peak is anodically higher shifted (DeltaE(1/2) = 340 mV), and the low energy band of the absorption spectrum is lower red-shifted (Delta lambda = 61 nm) that those found for dyad 5. The changes in the absorption spectra are accompanied by dramatic color changes which allow the potential for "naked eye" detection. A further exciting property of dyad 7 is that it behaves as an electrochemically induced switchable chemosensor for Pb(2+) and Hg(2+) because of the low metal-ion affinity of the oxidized 7(*+) species for these metal cations. The experimental data and conclusions about the ion-sensing properties are supported by DFT calculations.  相似文献   

9.
The effect of heavy metal ions, Cd(2+), Hg(2+) and Pb(2+) on (+)-catechin binding to bovine serum albumin (BSA) has been investigated by spectroscopic methods. The results indicated that the presence of heavy metal ions significantly affected the binding modes and binding affinities of (+)-catechin to BSA, and the effects depend on the types of heavy metal ion. One binding mode was found for (+)-catechin with and without Cd(2+), while two binding modes - a weaker one at low concentration and a stronger one at high concentration were found for (+)-catechin in the presence of Hg(2+) and Pb(2+). The presence of Cd(2+) decreased the binding affinities of (+)-catechin for BSA by 20.5%. The presence of Hg(2+) and Pb(2+) decreased the binding affinity of (+)-catechin for BSA by 8.9% and 26.7% in lower concentration, respectively, and increased the binding affinity of (+)-catechin for BSA by 5.2% and 9.2% in higher concentration, respectively. The changed binding affinity and binding distance of (+)-catechin for BSA in the presence of Cd(2+), Hg(2+) and Pb(2+) were mainly because of the conformational change of BSA induced by heavy metal ions. However, the quenching mechanism for (+)-catechin to BSA was based on static quenching combined with non-radiative energy transfer irrespective of the absence or presence of heavy metal ions.  相似文献   

10.
The syntheses and chromogenic properties of calix[4]arenes, carrying 5,17-bisallyl-11,23-bis(p-X-phenyl)azo 3a-c, 5,11,17-triallyl-23-(p-X-phenyl)azo 4a-c, and 5,17-bis(hydroxypropyl)-11,23-bis(p-X-phenyl)azo groups on the upper rims 5a,b, are described. Unexpectedly, UV/vis spectra of the very popular 4-(4-nitrophenyl)azophenol-coupled calix[4]arenes 3c and 4c did not show any shift in lambda(max) when 10 different metal perchlorates were added separately to the host in a methanol-chloroform (v/v = 1/399) cosolvent. In contrast, the absorption spectra of calix[4]arenes with either 4-methoxyphenylazo (3b-5b) or 4-phenylazo (3a-5a) on the upper rim showed substantial bathochromic shifts (Deltalambda = 128-162 nm) upon the addition of soft metal ions (such as Hg(2+), Cr(3+), and Cu(2+)). The 4-(4-methoxyphenyl)azophenol-coupled calix[4]arenes (the 3b-5b series) are found to be highly sensitive for mercury ion (Hg(2+)) among the 10 different metal ions screened. Strong interactions between Hg(2+) ion and the 4-(4-methoxyphenyl)azophenol(s) as well as the p-allyl groups are corroborated by the (1)H NMR studies of 3a,b.Hg(2+) complexes. Furthermore, Job's plots revealed 1:1 binding stoichiometry for all these p-allyl- and arylazo-coupled calix[4]arenes with transition metal ions, and Benesi-Hilderbrand plots were used for the determination of their association constants.  相似文献   

11.
Thakur A  Sardar S  Ghosh S 《Inorganic chemistry》2011,50(15):7066-7073
The synthesis, electrochemical, optical, and metal-cation-sensing properties of ferrocene-glycine conjugates C(30)H(38)O(8)N(8)Fe (2) and C(20)H(24)O(4)N(4)Fe (3) have been documented. Both compounds 2 and 3 behave as very selective redox (ΔE(1/2) = 217 mV for 2 and ΔE(1/2) = 160 mV for 3), chromogenic, and fluorescent chemosensors for Hg(2+) cations in an aqueous environment. The considerable changes in their absorption spectra are accompanied by the appearance of a new low-energy peak at 630 nm (2, ε = 1600 M(-1) cm(-1); 3, ε = 822 M(-1) cm(-1)). This is also accompanied by a strong color change from yellow to purple, which allows a prospective for the "naked eye" detection of Hg(2+) cations. These chemosensors present immense brightness and fluorescence enhancement (chelation-enhanced fluorescence = 91 for 2 and 42 for 3) following Hg(2+) coordination within the limit of detection for Hg(2+) at 7.5 parts per billion.  相似文献   

12.
Aldimine 4 bearing a 2-quinolyl group was prepared by aza-Wittig reaction between the triphenyliminophosphorane derived from the 1,1'-diazidoferrocene and 2-formylquinoline. However, aldimine 5, bearing a pyrene ring, was prepared using the most reactive tributyliminophosphorane derivative and the corresponding 1-formylpyrene. On the other hand, formation of aldimine 8 involves a tandem process, Staudinger reaction/intramolecular aza-Wittig reaction, by using directly 1,1'-diazidoferrocene and 2-(diphenylphosphonyl)benzaldehyde. Aldimine 4 behaves as chemosensor molecule for Ni(2+), Zn(2+), Cd(2+), Hg(2+) and Pb(2+) cations through two different channels: electrochemical (ΔE(1/2) = 222-361 mV) and chromogenic (Δλ = 122-153 nm), which can be used for the "naked eye" detection of these metal cations. Aldimine 5 behaves as a highly selective redox (in CH(3)CN) and fluorescent (in CH(3)Cl-DMF) probe for Hg(2+) metal cations even in the presence of a large excess of the other metal cations tested. Aldimine 8 displays electrochemical affinity (ΔE(1/2) = 60-288 mV) to Li(+), Ca(2+), Mg(2+), Zn(2+) and Pb(2+) metal cations, with the phosphorus oxide functionality as a binding site. From the (1)H NMR titration data as well as DFT calculations, different tentative binding modes have been established, for these structurally related ferrocenyl derivatives.  相似文献   

13.
The performance of a carbon paste electrode (CPE) modified with SBA-15 nanostructured silica organofunctionalised with 2-benzothiazolethiol in the simultaneous determination of Pb(II), Cu(II) and Hg(II) ions in natural water and sugar cane spirit (cacha?a) is described. Pb(II), Cu(II) and Hg(II) were pre-concentrated on the surface of the modified electrode by complexing with 2-benzothiazolethiol and reduced at a negative potential (-0.80 V). Then the reduced products were oxidised by DPASV procedure. The fact that three stripping peaks appeared on the voltammograms at the potentials of -0.48 V (Pb2+), -0.03 V (Cu2+) and +0.36 V (Hg2+) in relation to the SCE, demonstrates the possibility of simultaneous determination of Pb2+, Cu2+ and Hg2+. The best results were obtained under the following optimised conditions: 100 mV pulse amplitude, 3 min accumulation time, 25 mV s(-1) scan rate in phosphate solution pH 3.0. Using such parameters, calibration graphs were linear in the concentration ranges of 3.00-70.0 x 10(-7) mol L(-1) (Pb2+), 8.00-100.0 x 10(-7) mol L(-1) (Cu2+) and 2.00-10.0 x 10(-6) mol L(-1) (Hg2+). Detection limits of 4.0 x 10(-8) mol L(-1) (Pb2+), 2.0 x 10(-7) mol L(-1) (Cu2+) and 4.0 x 10(-7) mol L(-1) (Hg2+) were obtained at the signal noise ratio (SNR) of 3. The results indicate that this electrode is sensitive and effective for simultaneous determination of Pb2+, Cu2+ and Hg2+ in the analysed samples.  相似文献   

14.
Hg(2+) ions are bound to a 1,4-benzenedimethanethiol (BDMT) monolayer assembled on a Au electrode. Electrochemical reduction of the Hg(2+)-BDMT monolayer to Hg(+)-BDMT (at E degrees =0.48 V) and subsequently to Hg(0)-BDMT (at E degrees =0.2 V) proceeds with electron-transfer rate constants of 8 and 11 s(-1), respectively. The Hg(0) atoms cluster into aggregates that exhibit dimensions of 30 nm to 2 microm, within a time interval of minutes. Electrochemical oxidation of the nanoclusters to Hg(+) and further oxidation to Hg(2+) ions proceeds with electron-transfer rate constants corresponding to 9 and 43 s(-1), respectively, and the redistribution of Hg(2+) on the thiolated monolayer occurs within approximately 15 s. The reduction of the Hg(2+) ions to the Hg(0) nanoclusters and their reverse electrochemical oxidation proceed without the dissolution of mercury species to the electrolyte, implying high affinities of Hg(2+), Hg(+), and Hg(0) to the thiolated monolayer. The electrochemical transformation of the Hg(2+)-thiolated monolayer to the Hg(0)-nanocluster-functionalized monolayer is characterized by electrochemical means, surface plasmon resonance (SPR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact-angle measurements. The Hg(0)-nanocluster-modified surface reveals enhanced hydrophobicity (contact angle 76 degrees ) as compared to the Hg(2+)-thiolated monolayer (contact angle 57 degrees ). The hydrophobic properties of the Hg(0)-nanocluster-modified electrode are further supported by force measurements employing a hydrophobically modified AFM tip.  相似文献   

15.
A new method of simultaneous determination of Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ is proposed here by using the second-derivative spectrophotometry method. In pH=10.35 Borax-NaOH buffer, using meso-tetra (3-methoxyl-4-hydroxylphenyl) porphyrin ([T-(3-MO-4-HP)P]) as chromomeric reagent, micelle solution was formed after Tween-80 surfactant was added into the solution containing Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ ions. The original absorption spectrum of the above complexes was obtained after heating in the boiling water for 25 min. The second-derivative absorption peaks of five metal-porphyrin complexes can be separated from the original absorption spectrum by using chemometric tool. In this way, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ ions can be determined simultaneously. Under the optimal conditions, the linear ranges of the calibration curve were 0-0.60, 0-0.60, 0-0.40, 0-0.80 and 0-0.48 μg mL(-1) for Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+, respectively. The molar absorptivity of these color systems were 1.38×10(5), 1.01×10(5), 3.24×10(5), 1.07×10(5) and 1.29×10(5)Lmol(-1)cm(-1). The method developed in this paper has advantages in selectivity, sensitivity, operation and can effectively resolve spectra overlapping problem. This method has been applied to determine the real samples with satisfactory results.  相似文献   

16.
A bis(ruthenium-bipyridine) complex bridged by 1,8-bis(2,2':6',2'-terpyrid-4'-yl)anthracene (btpyan), [Ru(2)(μ-Cl)(bpy)(2)(btpyan)](BF(4))(3) ([1](BF(4))(3); bpy = 2,2'-bipyridine), was prepared. The cyclic voltammogram of [1](BF(4))(3) in water at pH?1.0 displayed two reversible [Ru(II),Ru(II)](3+)/[Ru(II),Ru(III)](4+) and [Ru(II),Ru(III)](4+)/[Ru(III),Ru(III)](5+) redox couples at E(1/2)(1) = +0.61 and E(1/2)(2) = +0.80?V (vs. Ag/AgCl), respectively, and an irreversible anodic peak at around E = +1.2?V followed by a strong anodic currents as a result of the oxidation of water. The controlled potential electrolysis of [1](3+) ions at E = +1.60?V in water at pH?2.6 (buffered with H(3)PO(4)/NaH(2)PO(4)) catalytically evolved dioxygen. Immediately after the electrolysis of the [1](3+) ion in H(2)(16)O at E = +1.40?V, the resultant solution displayed two resonance Raman bands at nu = 442 and 824?cm(-1). These bands shifted to nu = 426 and 780?cm(-1), respectively, when the same electrolysis was conducted in H(2)(18)O. The chemical oxidation of the [1](3+) ion by using a Ce(IV) species in H(2)(16)O and H(2)(18)O also exhibited the same resonance Raman spectra. The observed isotope frequency shifts (Δnu = 16 and 44?cm(-1)) fully fit the calculated ones based on the Ru-O and O-O stretching modes, respectively. The first successful identification of the metal-O-O-metal stretching band in the oxidation of water indicates that the oxygen-oxygen bond at the stage prior to the evolution of O(2) is formed through the intramolecular coupling of two Ru-oxo groups derived from the [1](3+) ion.  相似文献   

17.
A viologen derivative, 1,1'-di-p-tolyl-(4,4'-bipyridine)-1,1'-diium dichloride (DTV(2+)), was studied in solution and encapsulated in cucurbit[7]uril (CB7), a macrocyclic host. Upon encapsulation, DTV(2+) exhibited dramatically enhanced fluorescence. Aqueous solutions of DTV(2+) were weakly fluorescent (Φ = 0.01, τ < 20 ps), whereas the emission of the DTV(2+)@2CB7 complex was enhanced by 1 order of magnitude (Φ = 0.12, τ = 0.7 ns) and blue-shifted by 35 nm. Similar properties were observed in the presence of NaCl. DTV(2+) in a poly(methyl methacrylate) matrix was fluorescent with a spectrum similar to that observed for the complex in solution. (1)H NMR and UV-vis titrations indicated that the DTV(2+)@2CB7 complex is formed in aqueous solutions with complexation constants K(1) = (1.2 ± 0.3) × 10(4) M(-1) and K(2)= (1.0 ± 0.4) × 10(4) M(-1) in water. Density functional theory and configuration interaction singles calculations suggested that the hindrance of the rotational relaxation of the S(1) state of DTV(2+) caused by encapsulation within the host or a polymer matrix plays a key role in the observed emission enhancement. The absorption and emission spectra of DTV(2+)@2CB7 in water exhibited a large Stokes shift (ΔSt ~ 9000 cm(-1)) and no fine structure. DTV(2+) is a good electron acceptor [E°(DTV(2+)/DTV(?+)) = -0.30 V vs Ag/AgCl] and a strong photooxidant [E°(DTV*(2+)/DTV(?+)) = 0.09 V vs NHE]).  相似文献   

18.
A new terphenyl-based macrocycle 5 incorporating phenanthroline as a fluorophore has been designed, synthesized and examined for its recognition ability toward various cations (Pb(2+), Hg(2+), Ba(2+), Cd(2+), Ag(+), Zn(2+), Cu(2+), Ni(2+), Co(2+), K(+), Mg(2+), Na(+) and Li(+)) by UV-vis, fluorescence and NMR spectroscopy. The receptor 5 showed highly selective 'Off-On' fluorescence signaling behavior for Zn(2+) ions in THF. Interestingly, the addition of H(2)PO(4)(-) ions to the [5-Zn] complex regulates the binding site for additional Zn(2+) ions and hence leads to a blue-shifted emission band.  相似文献   

19.
A new 8-hydroxyquinoline derivative having an appended boron-dipyrromethene function has been prepared, and its metal ion sensing properties were investigated. The designed compound exhibited pronounced Hg(2+)-selective on-off-type fluoroionophoric properties among the representative transition- and heavy-metal ions in aqueous dioxane solution. The fluorescence was efficiently quenched more than 98% with 5 equiv of Hg(2+) ions, and the detection limit was found to be 5 x 10(-)(6) M in a dioxane-water (1:3, v/v) solvent system. The ionophore also showed a selective chromogenic behavior toward Hg(2+) ions by changing the color of the solution from light amber to red, which can be detected with the naked eye.  相似文献   

20.
[reaction: see text] A new fluoroionophore has been synthesized by appending two signaling pyrenylacetamide subunits on the binding motif of 1,8-dimethylcyclam. The designed compound exhibited highly selective and sensitive fluoroionophoric behavior toward Hg(2+) ions of excimer emission in aqueous dioxane (dioxane/H(2)O = 1:9, v/v) solution with a detection limit of 1.3 x 10(-)(6) M. The "ON-OFF" type signaling behavior of the fluoroionophore is due to the metal ion induced conformational changes from folded to open-winged conformations by exploiting the two nearby appended pyrenyl fluorophores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号