首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 277 毫秒
1.
A series of conjugated blue‐light‐emitting copolymers, PTC‐1 , PTC‐2 , and PTC‐3, comprised different ratios of electron‐withdrawing segments (spirobifluorene substituted with cyanophenyl groups) and electron‐donating segments (tricarbazole‐triphenylamines), has been synthesized. The structures of these polymers were characterized and their thermal, photophysical, electrochemical, and electroluminescence properties were measured. Incorporation of rigid spirobifluorene units into the copolymers led to blue‐shifted absorption peaks in dilute toluene solution. Cyclic voltammetric measurement indicated the bandgaps of the polymers were in the range of 2.77–2.94 eV. It was found that increasing cyanophenyl‐spirobifluorene content in the polymer backbone lowered both the HOMO and LUMO energy levels of the copolymers, which was beneficial for electron injection/transporting in the polymer layer of the device. OLED device evaluation indicated that all the polymers emitted sky blue to deep blue light when the pure polymers were used as the emissive layers in the devices with a configuration of ITO/PEDOT:PSS/polymers/CsF/Ca/Al. The devices have been optimized by doping 30 wt % PBD into the polymer layers. Among the doped devices, PTC‐2 showed the best performance with the turn‐on voltage of 3.0 V, maximum brightness of 7257 cd/m2, maximum current efficiency of 1.76 cd/A, and CIE coordinates of (0.15, 0.14). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 292–301, 2010  相似文献   

2.
Three biscoumarin dyes bridged by polycyclic aromatic bridges (anthracen, pyrene and dibenzo[g,p]chrysene) were prepared as the emissive materials for the application of organic light-emitting devices. The relationship between their structures, photophysical properties, electrochemical properties and performances of organic light-emitting devices are described. The multilayered doped devices with a configuration of ITO/NPB (20 nm)/TBADN: biscoumarin compound (x wt%, 30 nm)/TPBi (30 nm)/Liq (2 nm)/Al (100 nm) have been successfully fabricated by vacuum-deposition method. All the devices showed green emission with high electroluminescent efficiencies. Especially, the device based on the compound containing pyrene as a bridge group at 7% doping concentration showed the best performance with a maximum brightness of 10552 cd/m2, maximum luminous efficiency of 5.39 cd/A and maximum external quantum efficiency (EQE) of 2.35%.  相似文献   

3.
Two new electron‐transporting copolyphenylenes P1NH and P2NH possessing balanced charges crucial to emission efficiency of polymer light‐emitting diodes (PLEDs) have been synthesized and applied as an electron‐transporting layer (ETL). The main chain structure is all para‐linkage for P1NH and both para‐ and meta‐linkage for P2NH , with the same pendant electron‐withdrawing benzimidazolyl and polar diethanolaminohexyloxy groups. Both copolymers possess excellent thermal stability (T d > 300 °C, T g > 100 °C) due to their rigid backbones. In addition, the pendant groups effectively lower LUMO (~ ?2.70 eV) and HOMO (~ ?5.70 eV) levels, resulting in improved electron‐transporting and hole‐blocking capabilities. Multilayer yellow‐emitting PLEDs with a configuration of ITO/PEDOT:PSS/SY/ETL/LiF/Al were successfully fabricated by the spin‐coating process. The maximum luminance and maximum current efficiency of the P1NH ‐based device were 12,881 cd/m2 and 10.94 cd/A, respectively, superior to the performance of P2NH ‐based device (4938 cd/m2, 3.70 cd/A) and the device without ETL (8690 cd/m2, 2.78 cd/A). Current results indicate that P1NH is highly effective in enhancing electron transport and device performance. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2494–2505  相似文献   

4.
利用两种Cs基衍生物碳酸铯(Cs2CO3)和醋酸铯(CH3COOCs)作为n型掺杂剂掺入到一种新型的电子传输材料2,9-二(2-萘基)-4,7-二苯基-1,10-菲啰啉(NBPhen)中来提高有机发光二极管(OLEDs)的效率.实验结果表明:器件的驱动电压明显降低,并且优化后得到的Cs基n型掺杂器件(ITO/β-NPB/CBP:5%(w)N-BDAVBi/NBPhen/NBPhen:Cs2CO3(or CH3COOCs)/Al)呈现出较好的电致发光性能,在14 V时电流密度分别为551.80和527.88 mA·cm-2,对应的亮度分别达到39750和39820 cd·m-2,电流效率在亮度为10000 cd·m-2时分别为14.60 cd·A-1(Cs2CO3掺杂)和14.40 cd·A-1(CH3COOCs掺杂),这些参数明显优于传统器件的发光性能(ITO/β-NPB/CBP:5%(w)N-BDAVBi/NBPhen/Cs2CO3/Al,其在14 V时电流密度为312.39 mA·cm-2,对应的亮度为25190 cd·m-2;电流效率在亮度为10000 cd·m-2时为9.45 cd·A-1.此外,基于有机半导体掺杂原理和器件的能级结构对n型掺杂器件效率提高的原因进行了分析.  相似文献   

5.
采用新型贵金属铱的配合物(pbi)2Ir(acac)作为客体磷光发光材料, 分别以4%和5%(w)的浓度掺杂于聚合物主体材料poly(N-vinylcarbazole) (PVK)中, 利用旋涂工艺制备了结构为indium-tin oxide (ITO)/PVK:(pbi)2Ir(acac)/2,9-二甲基-4,7-二苯基-1,10-菲咯啉(BCP)/Mg:Ag的有机电致发光器件, 对磷光材料(pbi)2Ir(acac)的紫外-可见吸收光谱﹑光致发光光谱以及聚合物掺杂的磷光器件的电致发光特性进行了研究. 结果表明, 两种掺杂浓度的器件均具有8 V左右的启亮电压, 器件在启亮后的最大流明效率分别为1.53和1.31 lm·W-1, 最大亮度分别为11210和9174 cd·m-2; 同时, 器件的电致发光光谱与色坐标均不随偏置电压和客体掺杂浓度的变化而改变, 具有稳定的色纯度. 分析了主体材料PVK到磷光客体(pbi)2Ir(acac)的能量转移机制, 并探讨了随着器件电流密度和客体掺杂浓度的逐渐增加, 器件流明效率的变化趋势.  相似文献   

6.
不同电子传输层的蓝光有机电致发光器件的性能研究   总被引:6,自引:0,他引:6  
自从Tang等^[1]首次报道多层有机电致发光器件(OLED)以来,其在亮度和效率上有了质的飞跃,表明器件的结构对提高发光亮度和发光效率起着至关重要的作用,单层器件虽然具有制作简单的优点,但却存在明显缺点:(1)复合发光区靠近金属电极,该处缺陷很多,非辐射复合几率大,导致器件效率降低;(2)由于两种载流子注入不平衡,载流子的复合几率较低,因而影响器件的发光效率,要使发光层中具有高的载流子辐射复合效率,两种载流子的注入及传输能力应相当,否则传输快的一方就会直接穿过发光层到达对电极被猝灭,平衡电子和空穴的注入与传输可通过在电极和发光层之间加入载流子输运层或限制层制作多层器件的途径来实现,基于上述考虑,我们以PPCP为发光层(PPCP是一种荧光效率较高的蓝光材料^[2-4],对其进行深入研究尚未见有文献报道_,设计了4种不同电子传输层(ETL)的三层 结构的OLED,为研究电子传输层对器件性能的影响,我们还制备了不含电子传输层的双层器件,结果表明,通过选择合适的ETL,OLED的发光亮度及发光效率会有很大程度的改善。  相似文献   

7.
Nonconjugated bipolar transport polymers have been developed as host materials for electroluminescent devices by incorporating both electron‐transporting and hole‐transporting functionalities into copolymers. The random copolymer PCt‐nvk3‐7 containing mesogen‐jacketed segment of P‐Ct have been synthesized and characterized. The effect of mesogen‐jacketed segment content of these bipolar copolymers on device performance has been investigated. The results of polymer light‐emitting diodes (PLEDs) show that the jacketed content of copolymers has a significant effect on device performance: lowering charge transport and facilitating the hole‐electron recombination leads to much higher current efficiency. Applying these high triplet random copolymers as host, the maximum current efficiency of 0.70 cd/A and the maximum brightness of 1872.8 cd/m2 was achieved for PCt‐nvk3‐7 with an orange‐emitting complex dopant. The results suggest that the bipolar copolymers PCt‐nvks can be good host polymers for electrophosphorescent devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7861–7867, 2008  相似文献   

8.
采用旋涂法将一组带烷氧基的苯基蒎烯吡啶铱(Ⅲ)配合物(Ir(RO-pppy)3)磷光材料掺杂到PVK中,制作出了聚合物电致发光器件:ITO/PE-DOT:PSS(40 nm)/PVK0.7:PBD0.3:(x%.)Ir-complex(80 nm)/CsF(1.5 nm)/Mg:Ag(200 nm).实验结果表明,带有长烷氧基链配体的铱(Ⅲ)配合物能表现出更好的器件行为,当掺杂浓度为3.2%时,器件的最高发光效率达19.9 cd/A(7.8 lm/W,9.1V),CIE为(0.20,0.56);器件最大亮度为15700 cd/m2(8.4V).通过对这组铱(Ⅲ)配合物的光物理行为及电化学性能的研究,考察了主体材料与配合物之间的能级配置以及能量转移的机理.  相似文献   

9.
For the purpose of making hyperbranched polymer (Hb‐Ps)‐based red, green, blue, and white polymer light‐emitting diodes (PLEDs), three Hb‐Ps Hb‐ terfluorene ( Hb‐TF ), Hb ‐4,7‐bis(9,9′‐dioctylfluoren‐2‐yl)‐2,1,3‐benzothiodiazole ( Hb‐BFBT ), and Hb‐ 4,7‐bis[(9,9′‐dioctylfluoren‐2‐yl)‐thien‐2‐yl]‐2,1,3‐benzothiodiazole ( Hb‐BFTBT ) were synthesized via [2+2+2] polycyclotrimerization of the corresponding diacetylene‐functionalized monomers. All the synthesized polymers showed excellent thermal stability with degradation temperature higher than 355 °C and glass transition temperatures higher than 50 °C. Photoluminance (PL) and electroluminance (EL) spectra of the polymers indicate that Hb‐TF , Hb‐BFBT , and Hb‐BFTBT are blue‐green, green, and red emitting materials. Maximum brightness of the double‐layer devices of Hb‐TF , Hb‐BFBT , and Hb‐BFTBT with the device configuration of indium tin oxide/poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate)/light‐emitting polymer/CsF/Al are 48, 42, and 29 cd/m2; the maximum luminance efficiency of the devices are 0.01, 0.02, and 0.01 cd/A. By using host–guest doped system, saturated red electrophosphorescent devices with a maximum luminance efficiency of 1.61 cd/A were obtained when Hb‐TF was used as a host material doped with Os(fptz)2(PPh2Me2)2 as a guest material. A maximum luminance efficiency of 3.39 cd/A of a red polymer light‐emitting device was also reached when Hb‐BFTBT was used as the guest in the PFO (Poly(9,9‐dioctylfluorene)) host layer. In addition, a series of efficient white devices were, which show low turn‐on voltage (3.5 V) with highest luminance efficiency of 4.98 cd/A, maximum brightness of 1185 cd/m2, and the Commission Internationale de l'Eclairage (CIE) coordinates close to ideal white emission (0.33, 0.33), were prepared by using BFBT as auxiliary dopant. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
设计合成了一种新型的基于5-芳基-2-巯基噁二唑辅助配体的双核环金属铂配合物(dfppy)2Pt2(C8OXT)2,其中dfppy为2-(4,6-二氟苯基)吡啶,C8OXT为5-苯基-2-巯基-1,3,4-噁二唑桥连配体.系统研究了该双核铂配合物(dfppy)2Pt2(C8OXT)2的热稳定性、光物理、电化学及电致发光性能.以(dfppy)2Pt2(C8OXT)2作为客体掺杂到聚合物主体材料中制备了单发光层聚合物电致发光器件.器件展现了饱和的红光发射,其最大发射峰为620nm.当配合物掺杂浓度为8wt%时,器件性能达到最好.其最高外量子效率为8.4%,最高电流效率为4.2cd/A,最大亮度为3228cd/m2.本研究表明,以5-苯基-2-巯基-1,3,4-噁二唑作为桥连配体的双核铂配合物在聚合物器件中能够实现高效红光发射.  相似文献   

11.
We have synthesized a blue-light-emitting polyfluorene derivative (PF-TPAOXD) that presents sterically hindered, dipolar pendent groups functionalized at the C-9 positions of alternating fluorene units. The incorporation of the dipolar side chains, each comprising an electron-rich triphenylamine group and an electron-deficient oxadiazole group connected through a π-conjugated bridge, endows the resultant polymer with higher highest occupied molecular orbital and lower lowest unoccupied molecular orbital energy levels, which, consequently, lead to an increase in both hole and electron affinities. An electroluminescent device incorporating this polymer as the emitting layer exhibited a stable blue emission with a maximum brightness of 2080 cd/m2 at 12 V and a maximum external quantum efficiency of 1.4% at a brightness of 137 cd/m2. Furthermore, atomic force microscopy measurements indicated that the dipolar nature of PF-TPAOXD, in contrast to the general nonpolarity of polydialkylfluorenes, provided a stabilizing environment allowing the polar organometallic triplet dopant to be dispersed homogeneously. We also fabricated an electrophosphorescent device incorporating PF-TPAOXD as the host material doped with a red-emitting osmium complex to realize red electroluminescence with Commission Internationale de l'Eclairage color coordinates of (0.66, 0.34). The resulting device exhibited a maximum external quantum efficiency of 7.3% at a brightness of 1747 cd/m2 and a maximum brightness of 7244 cd/m2. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2073–2084, 2007  相似文献   

12.
Two novel bipolar deep-blue fluorescent emitters, IP-PPI and IP-DPPI, featuring different lengths of the phenyl bridge, were designed and synthesized, in which imidazo[1,2-a]pyridine (IP) and phenanthroimidazole (PI) were proposed as an electron acceptor and an electron donor, respectively. Both of them exhibit outstanding thermal stability and high emission quantum yields. All the devices based on these two materials showed negligible efficiency roll-off with increasing current density. Impressively, non-doped organic light-emitting diodes (OLEDs) based on IP-PPI and IP-DPPI exhibited external quantum efficiencies (EQEs) of 4.85 % and 4.74 % with CIE coordinates of (0.153, 0.097) and (0.154, 0.114) at 10000 cd m−2, respectively. In addition, the 40 wt % IP-PPI doped device maintained a high EQE of 5.23 % with CIE coordinates of (0.154, 0.077) at 10000 cd m−2. The doped device based on 20 wt % IP-DPPI exhibited a higher deep-blue electroluminescence (EL) performance with a maximum EQE of up to 6.13 % at CIE of (0.153, 0.078) and maintained an EQE of 5.07 % at 10000 cd m−2. To the best of our knowledge, these performances are among the state-of-the art devices with CIEy≤0.08 at a high brightness of 10000 cd m−2. Furthermore, by doping a red phosphorescent dye Ir(MDQ)2 (MDQ=2-methyldibenzo[f,h]quinoxaline) into the IP-PPI and IP-DPPI hosts, high-performance red phosphorescent OLEDs with EQEs of 20.8 % and 19.1 % were achieved, respectively. This work may provide a new approach for designing highly efficient deep-blue emitters with negligible roll-off for OLED applications.  相似文献   

13.
刘坚  韦春 《无机化学学报》2012,28(2):398-404
合成了一种含有载流子传输基新的铱配合物(BPPBI)2Ir(ECTFBD)[HBPPBI:1-苯基-2-(4-联苯基)苯并咪唑,HECTFBD:1-(9-乙基-3-咔唑基)-4,4,4-三氟-1,3-丁二酮],其结构和组成经核磁共振氢谱和元素分析所证实。研究了这种铱配合物二氯甲烷溶液的光物理和电化学性质。制作了基于这种铱配合物的电致磷光器件。器件结构是ITO/MoO3(10 nm)/NPB(80 nm)/CBP:x%(BPPBI)2Ir(ECTFBD)(20 nm)/TPBi(45 nm)/LiF/Al[x%:质量百分比为4%和7%的掺杂浓度;NPB:N4,N4′-二(1-萘基)-N4,N4′-二苯基-4,4′-联苯二胺,CBP:4,4′-二(9-咔唑基)联苯,TPBi:1,3,5-三(2-(1-苯基)苯并咪唑基)苯]。这些器件显示出深黄色的发射。对于7%掺杂浓度器件,最大的电流效率和最大发光亮度分别是5.2 cd.A-1和8 690 cd.m-2。  相似文献   

14.
Multifunctional donor–acceptor compound 4,4′‐bis(dibenzothiophene‐S,S‐dioxide‐2‐yl)triphenylamine ( DSTPA ) was obtained by linking a strongly electron‐withdrawing core and a strongly electron‐donating core with a biphenyl bridge in linear spatial alignment. DSTPA not only has suitable HOMO and LUMO levels for easily accepting both holes and electrons, it was also demonstrated to have a high fluorescence quantum yield of 0.98 and a high triplet energy level of 2.39 eV. Versatile applications of DSTPA for bipolar transport, green fluorescent emission, and sensitizing a red phosphor were systematically investigated in a series of multi‐ and single‐layer organic light‐emitting devices. In traditional multilayer devices, it shows excellent performance both in an undoped fluorescent device (used as a green emitter and achieving maximum current and power efficiencies (CE and PE) of 12.6 cd A?1 and 9.4 Lm W?1, respectively) and in a red phosphorescent device (used as a host and achieving maximum CE and PE of 26.4 cd A?1 and 26.3 Lm W?1, respectively). Furthermore, DSTPA was also simultaneously used as an emitter, a hole transporter, and an electron transporter in a single‐layer device showing CE and PE of 5.1 cd A?1 and 4.7 Lm W?1, respectively. A single‐layer red phosphorescent device with efficiencies of 11.7 cd A?1 and 12.6 Lm W?1 was obtained by doping DSTPA with a red phosphor. The performances of all of the devices in this work are comparable to the best of their corresponding classes in the literature.  相似文献   

15.
Yu J  Zhou L  Zhang H  Zheng Y  Li H  Deng R  Peng Z  Li Z 《Inorganic chemistry》2005,44(5):1611-1618
The syntheses, structures, and electroluminescent properties are described for two new lanthanide complexes Ln(HFNH)3phen [HFNH = 4,4,5,5,6,6,6-heptafluoro-1-(2-naphthyl)hexane-1,3-dione; phen = 1,10-phenanthroline; Ln = Eu3+ (1), Sm3+ (2)]. Both complexes exhibit bright photoluminescence at room temperature (RT) due to the characteristic emission of Eu3+ and Sm3+ ion. Several devices using the two complexes as emitters were fabricated. The performances of these devices are among the best reported for devices using europium complex and samarium complex as emitters. The device based on 1 with the structure ITO/TPD (50 nm)/1:CBP (10%, 40 nm)/BCP (20 nm)/AlQ (30 nm)/LiF (1 nm)/Al (200 nm) exhibits the maximum brightness of 957 cd/m2, current efficiency of 4.14 cd/A, and power efficiency of 2.28 lm/W with a pure red Eu3+ ion emission. Especially, at the high brightness of 200 cd/m2, the device of 1 still has a high current efficiency of 2.15 cd/A. The device of 2 with a three-layer structure of ITO/TPD (50 nm)/2 (50 nm)/BCP (20 nm)/LiF (1 nm)/Al (200 nm) gives the maximum brightness of 42 cd/m2, current efficiency of 0.18 cd/A. By the comparison of the electroluminescent properties of devices based on Eu(TTA3phen (TTA = 2-thenoyltrifluoroacteonate) and 1, we conclude that the polyfluoration on the alkyl group of the ligand and the introduction of the long conjugate naphthyl group into the ligand improve the efficiency of 1-doped devices, especially at high current densities.  相似文献   

16.
A convenient approach to novel charged Ir polymers for optoelectronic devices to achieve red emission was developed. 2-(Pyridin-2-yl)benzimidazole units grafted into the side chains of macroligands (PFCz and PFP) served as ligands for the formation of charged Ir complex pendants with 1-phenylisoquinoline (1-piq). The charged Ir polymers (PFPIrPiq and PFCzIrPiq) showed exclusive Ir(1-piq)(2){N-[2-(pyridin-2-yl)benzimidazole]hexyl}(+)BF(4)(-) (IrPiq) emission, with the peak at 595 nm. The best device performances were obtained from PFCzIrPiq4 with the device configuration of ITO/PEDOT:PSS/PFCzIrPiq4+PBD (30 wt %)/TPBI/Ba/Al (PBD: 5-(4-tert-butylphenyl)-2-(biphenyl-4-yl)-1,3,4-oxadiazole; TPBI: 1,3,5-tris-(2-N-phenylbenzimidazolyl)benzene). A maximum external quantum efficiency (EQE) of 7.3 % and a luminous efficiency (LE) of 6.9 cd A(-1) with a luminance of 138 cd m(-2) were achieved at a current density of 1.9 mA cm(-2). The efficiencies remained as high as EQE=3.4 % and LE=3.3 cd A(-1) with a luminance of 3770 cd m(-2) at a current density of 115 mA cm(-2). The single-layer devices based on charged Ir polymers also showed high efficiency with the high work-function metal Ag as cathode. The maximum external quantum efficiencies of the devices were 0.64 % and 0.66 % for PFPIrPiq2 and PFPIrPiq10, respectively. A possible mechanism of an electrochemical cell associated with its electrochemical redox pathway for single-layer devices has been proposed. The results showed that the charged Ir polymers are promising candidate materials for polymer optoelectronic devices.  相似文献   

17.
Block copolymers containing thiophene units in one block and oxadiazole (OXD) units in the other were prepared. Atom transfer radical polymerization method was used to obtain the thiophene‐containing mesogen‐jacketed polymers, and the kinetic study indicated that the polymerization was controllable and the polymers could be used to initiate the polymerization of the OXD‐containing monomers. Photoluminescent spectra indicated that the fluorescence quantum yields of the polymers increased with increasing content of OXD. And, more OXD domains, that is, more interfaces between the hole‐transport parts and electron‐transport parts, resulting in the higher probability of exciplex formation. The electroluminescent devices containing the block copolymer with 64 mol % OXD as the emissive layer had a maximum brightness of 127 cd/m2 and an extremely low onset voltage of 7.7 V, which indicated that the injection and transport of charge carriers were facilitated and the number of charge carriers was sufficiently high in early time after the voltage was turned on. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
We present a short, efficient synthetic route for the preparation of a novel polyfluorene copolymer (PF‐Q) containing two electron‐deficient, 2,4‐diphenylquinoline groups functionalized at the C‐9 positions of alternate fluorene units that form a three‐dimensional cardostructure. The presence of the rigid bulky pendent groups leads to a polyfluorene possessing a high glass‐transition temperature (207 °C) and very good thermal stability (5% weight loss observed at 460 °C). A photoluminescence study revealed that the Förster energy transfer from the excited quinoline groups to the polyfluorene backbone is very efficient; it also demonstrated that the commonly observed aggregate/excimer formation in polyfluorenes is suppressed very effectively in this polymer, even after it has been annealed at 150 °C for 20 h. A light emitting diode (LED) device prepared with PF‐Q as the emitting layer exhibits a stable blue emission with a maximum brightness of 1121 cd/m2 at 12 V and a maximum external quantum efficiency of 0.80% at 250 cd/m2. We also used PF‐Q, which contains diphenylquinoline units that behave as electron‐transporting side chains, as a host material and doped it with 2.4 wt % of a red‐emitting phosphorescent dye, Os(fppz), to realize a red electroluminescence with CIE color coordinates of (0.66, 0.34). The doped device exhibits a maximum external quantum efficiency of 6.63% (corresponding a luminance efficiency of 8.71 cd/A) at a current density of 47.8 mA/cm2, together with a maximum brightness of 10457 cd/m2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 859–869, 2005  相似文献   

19.
The efficiency roll-off and operational lifetime of organic light-emitting diodes (OLEDs) with a tetradentate Pt(II) emitter is improved by engaging an n-doped electron-transporting layer (ETL). Compared to those devices with non-doped ETL, the driving voltage is lowered, the charged carrier is balanced, and the exciton density in the emissive layer (EML) is decreased in the device with n-doped ETL with 8-hydroxyquinolinolatolithium (Liq). High luminance of almost 70,000 cd m−2 and high current efficiency of 40.5 cd A−1 at high luminance of 10,000 cd m−2 is achieved in the device with 50 wt%-Liq-doped ETL. More importantly, the extended operational lifetime of 1945 h is recorded at the initial luminance of 1000 cd m−2 in the 50 wt%-Liq-doped device, which is longer than that of the device with non-doped ETL by almost 10 times. This result manifests the potential application of tetradentate Pt(II) complexes in the OLED industry.  相似文献   

20.
We have systematically examined the photoluminescence (PL) and electroluminescence (EL) behavior of blends comprising two efficient red phosphors doped, respectively, into the blue-emitting polyfluorene derivatives PF-TPA-OXD and PF-OXD. The host polymers, which contain both hole- and electron-transporting or merely electron-transporting side chains, are capable of facilitating charge injection and transport. After determining the HOMO and LUMO energy levels of these materials, we were able to match the dopant with its most suitable host to achieve the direct formation and confinement of an exciton at the dopant. This configuration also leads to a reduction in the electrical excitation of the host polymer, which in turn decreases the degree of exciton loss arising from nonradiative decay of the host triplet. Using this approach, we were able to realize the production of high-performance red-electrophosphorescent devices. For Os(fppz)-doped devices, we obtain a balanced charge recombination in conjunction with higher current and luminance when using PF-TPA-OXD as the host matrix; this device reached a maximum external quantum efficiency of 8.37% with a peak brightness of 16 720 cd/m2. The absence of charge-transporting pendant units, i.e., the device fabricated from poly[9,9-dioctylfluorene-2,7-diyl] (POF), led, however, to relatively poor electroluminescence characteristics (5.81% and 2144 cd/m2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号