首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated a means of producing thin, oriented lipid monolayers which are stable under repeated washing and which may be useful in biosensing or surface-coating applications. Phosphatidylcholine and the glycosphingolipid GM1 were used as representative lipids for this work. Initially, a mixed self-assembled monolayer of octanethiol and hexadecanethiol was produced on a gold surface. This hydrophobic monolayer was then brought into contact with a thin lipid film that had been assembled at the liquid/air interface of a solution, allowing the lipid to deposit on the gold surface through hydrophobic interactions. The lipid layer was then heated to cause intermingling of the fatty acid and alkanethiol chains and cooled to form a highly stable film which withstood repeated rinsing and solution exposure. Presence and stability of the film were confirmed via ellipsometry, Fourier transform infrared spectroscopy, and quartz crystal microbalance (QCM), with an average overall film thickness of approximately 3.5 nm. This method was then utilized to produce GM1 layers on gold-coated QCM crystals for affinity sensing trials with cholera toxin. For these sensing elements, the lower detection limit of cholera toxin was found to be approximately 0.5 microg/mL, with a logarithmic relationship between toxin concentration and frequency response spanning over several orders of magnitude. Potential sites for nonspecific adsorption were blocked using serum albumin without sacrificing toxin specificity.  相似文献   

2.
Understanding the influence of molecular environment on phospholipids is important in time-of-flight secondary ion mass spectrometry (TOF-SIMS) studies of complex systems such as cellular membranes. Varying the molecular environment of model membrane Langmuir-Blodgett (LB) films is shown to affect the TOF-SIMS signal of the phospholipids in the films. The molecular environment of a LB film of dipalmitoylphosphatidylcholine (DPPC) is changed by varying the film density, varying the sample substrate, and the addition of cholesterol. An increase in film density results in a decrease in the headgroup fragment ion signal at a mass-to-charge ratio of 184 (phosphocholine). Varying the sample substrate increases the secondary ion yield of phosphocholine as does the addition of proton-donating molecules such as cholesterol to the DPPC LB film. Switching from a model system of DPPC and cholesterol to one of dipalmitoylphosphatidylethanolamine (DPPE) and cholesterol demonstrates the ability of cholesterol to also mask the phospholipid headgroup ion signal. TOF-SIMS studies of simplistic phospholipid LB model membrane systems demonstrate the potential use of these systems in TOF-SIMS analysis of cells.  相似文献   

3.
Using neutron/X-ray reflectivity and X-ray grazing incidence diffraction (GID), we have characterized the structure of mixed DPPE:GM1 lipid monolayers before and during the binding of cholera toxin (CTAB5) or its B subunit (CTB5). Structural parameters such as the density and thickness of the lipid layer, extension of the GM1 oligosaccharide headgroup, and orientation and position of the protein upon binding are reported. Both CTAB5 and CTB5 were measured to have 50% coverage when bound to the lipid monolayer. X-ray GID experiments show that both the lipid monolayer and the cholera toxin layer are crystalline. The effects of X-ray beam damage have been assessed and the monolayer/toxin structure does not change with time after protein binding has saturated.  相似文献   

4.
The small intestine is the primary site of dietary lipid absorption in mammals. The balance of nutrients, microorganisms, bile, and mucus that determine intestinal luminal environment cannot be recapitulated ex vivo, thus complicating studies of lipid absorption. We show that fluorescently labeled lipids can be used to visualize and study lipid absorption in live zebrafish larvae. We demonstrate that the addition of a BODIPY-fatty acid to a diet high in atherogenic lipids enables imaging of enterocyte lipid droplet dynamics in real time. We find that a lipid-rich meal promotes BODIPY-cholesterol absorption into an endosomal compartment distinguishable from lipid droplets. We also show that dietary fatty acids promote intestinal cholesterol absorption by rapid re-localization of NPC1L1 to the intestinal brush border. These data illustrate the power of the zebrafish system to address longstanding questions in vertebrate digestive physiology.  相似文献   

5.
Rapid separation and sensitive quantitation of vitamin A esters can be achieved by use of an acetonitrile-dichloromethane (80:20) mobile phase with a 5-microns C18 column (15 cm X 4.6 mm) and absorbance detection at 325 nm. Either a Waters Resolve or a Rainin Microsorb column was used satisfactorily. Retinyl palmitate is eluted at about 7 min (capacity factor, k' = 5.5) at a flow-rate of 1.5 ml/min; retinyl palmitate and retinyl oleate, which are usually difficult to separate, are well resolved (resolution 1.2). Sensitivity (at a signal-to-noise ratio of 10:1) is 8 pmol retinyl palmitate (equivalent to 2.5 ng retinol). Quantitation of total retinyl esters is identical to that determined by a gradient high-performance liquid chromatographic technique over the range 30-1000 ng retinyl esters. Retinyl ester peaks in rat liver extracts were identified by their characteristic light absorption spectra, susceptibility to saponification, and by co-chromatography with authentic standards. Nine vitamin A ester peaks were identified and quantitated in rat liver extracts. A 10-microns Whatman Partisil 10/25 ODS-2 column was used with the same mobile phase to obtain partial resolution of retinyl esters (resolution 1.05 between retinyl oleate and retinyl palmitate; k' = 11.0 for retinyl palmitate) and improved retention for retinol (k' = 2.5, compared with k' = 0.6 for retinol on the 5-microns column).  相似文献   

6.
Using sodium dodecyl sulfate--polyacrylamide gel electrophoresis and autoradiography, we have shown that 125I-labeled cholera toxin binds to Newcastle disease virus. Pretreatment of Newcastle disease virus with "cold" cholera toxin (at 37 degrees C for 30 minutes) inhibits the binding of 125I-labeled toxin in a subsequent incubation (at 37 degrees C for 30 minutes). These results suggest that cholera toxin binds to Newcastle disease virus in a specific manner. The precise receptor for toxin is unknown in Newcastle disease virus but it is presumed to be the ganglioside GM1. We have previously shown that the photoreactive probe 12-(4-azido-2-nitrophenoxy)stearoylglucosamine[1-14C] labels the membrane proteins of Newcastle disease virus. Since the reactive group of the probe, ie, N3, resides within the membrane bilayer, studies were initiated to determined which, if any, of the subunits of cholera toxin cross the membrane of Newcastle disease virus and become radioactively labeled upon photoactivation of the probe at 360 nm. After a 15-minute incubation of cholera toxin with Newcastle disease virus containing the photoreactive probe, irradiation effected the 14C-labeling of the active A1 subunit of cholera toxin. Irradiation of cholera toxin in solution with an equivalent amount of probe but without virus resulted in no labeling of toxin subunits.  相似文献   

7.
The present work describes a miniaturized potentiometric cholera toxin sensor on graphene nanosheets with incorporated lipid films. Ganglioside GM1, the natural cholera toxin receptor, immobilized on the stabilized lipid films, provided adequate selectivity for detection over a wide range of toxin concentrations, fast response time of ca. 5 min, and detection limit of 1 nM. The proposed sensor is easy to construct and exhibits good reproducibility, reusability, selectivity, long shelf life and high sensitivity of ca. 60 mV/decade of toxin concentration. The method was implemented and validated in lake water samples. This novel ultrathin film technology is currently adapted to the rapid detection of other toxins that could be used in bioterrorism.  相似文献   

8.
The effects of two kinds of cyclodextrins (CyDs), alpha- and beta-CyD, on biological membranes were investigated by measuring changes in the absorption of a non-absorbable drug, sulfanilic acid (SA), from the rat small intestine, using in situ and in vitro experiments. After pretreatment with a mucolytic agent, N-acetyl-L-cysteine (N-Ac), only beta-CyD increased the absorption of SA significantly compared to the absorption without pretreatment. The mechanism of the enhancing effect of CyDs on the absorption of SA was discussed. Almost no morphological change in the small intestine was observed by pretreatment with N-Ac alone, N-Ac or alpha- or beta-CyD combinations. The liberation of membrane components differed among the CyDs, e.g., alpha-CyD selectively released phospholipid while beta-CyD released mainly cholesterol from the intestinal membrane. It is suggested that the interaction of membrane components with CyDs may be at least partly responsible for the enhanced absorption of SA. Moreover it was found from in vitro electrophysiological experiment, that the alteration in enhanced permeability caused by beta-CyD occurred primarily in the transcellular pathways, rather than in the paracellular pathways of the small intestine. These results suggest that the enhancement of intestinal absorption by beta-CyD, after removal of the mucin layer from the intestinal surface, is due to the interaction between the membrane components and CyD. This interaction would induce disorder in cell membrane lipid, resulting in the increased permeability of the transcellular route.  相似文献   

9.
Progress with respect to enrichment and separation of native membrane components in complex lipid environments, such as native cell membranes, has so far been very limited. The reason for the slow progress can be related to the lack of efficient means to generate continuous and laterally fluid supported lipid bilayers (SLBs) made from real cell membranes. We show in this work how the edge of a hydrodynamically driven SLB can be used to induce rupture of adsorbed lipid vesicles of compositions that typically prevent spontaneous SLB formation, such as vesicles made of complex lipid compositions, containing high cholesterol content or being derived from real cell membranes. In particular, upon fusion between the moving edge of a preformed SLB and adsorbed vesicles made directly from 3T3 fibroblast cell membranes, the membrane content of the vesicles was shown to be efficiently transferred to the SLB. The molecular transfer was verified using cholera toxin B subunit (CTB) binding to monosialoganglioside receptors (G(M1) and G(M3)), and the preserved lateral mobility was confirmed by spatial manipulation of the G(M1/M3)-CTB complex using a hydrodynamic flow. Two populations of CTB with markedly different drift velocity could be identified, which from dissociation kinetics data were attributed to CTB bound with different numbers of ganglioside anchors.  相似文献   

10.
A palmitate biosensor that uses the emission intensity of a semiconducting nanoparticle to report palmitate concentration is presented. This method uses electron transfer to quench the emission from a ZnS-coated CdSe nanoparticle. The fatty acid binding pocket of intestinal fatty acid binding protein is used to modulate the electron transfer properties of [Ru(L)(NH3)4](PF6)2 (L = 5-maleimido-1,10-phenanthroline) that is covalently attached within this pocket. Once the metal-complex-modified protein is attached to ZnS-coated CdSe nanoparticles, palmitate addition excludes water from around the metal complex and increases the electron transfer from the metal complex to the valence band hole of the nanoparticle excited state. A 1.6-fold change in emission intensity is observed upon adding a saturated amount (500 nM) of sodium palmitate. The dissociation constant was calculated as 5 nM with a 1 nM lower limit of detection. Since palmitate does not alter the global conformation of intestinal fatty acid binding protein, palmitate-mediated changes in pocket solvation are suggested. This represents a new method in biosensor construction with semiconducting nanoparticles. Including previous conformation-dependent biosensors, there are thousands of potential analytes that can be detected with these strategies. Such biosensors will provide fluorescence contrast imaging reagents for small molecule analytes.  相似文献   

11.
The use of high-resolution, imaging TOF-SIMS is described and examples are made to demonstrate the application of the method in medical research. Cytochemistry by TOF-SIMS is shown by localization of diacylglycerol (DG) in cryostat sections of hyaline cartilage and by localization of corticosterone in cryostat sections of the adrenal gland cortex. Quantitative measurements and comparison of groups is shown by comparing the lipid content of adipose tissue from two mouse strains, transgenic mouse expressing the FOXC2 gene and wild-type controls. Finally, biopsies made for histopathological diagnosis of infantile reversible cytochrome c oxidase deficiency myopathy were analyzed in order to define the chemical content of areas showing a pathological structure in the light microscope. The use of high-resolution, imaging TOF-SIMS in medical research allows analysis of intact tissue and probe-free localization of specific target molecules in cells and tissues. The TOF-SIMS analysis is not dependent on penetration of reagents into the sample and also independent of probe reactivity such as cross-reactivity or background staining. The TOF-SIMS method can be made quantitative and allows for analysis of specific target molecules in defined tissue compartments.  相似文献   

12.
The location of each lipid in a palmitoyloleoylphosphatidylcholine/18:0 sphingomyelin/cholesterol monolayer system is laterally resolved using imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS) without the necessity of adding fluorescent labels. This system of coexisting immiscible liquid phases shows cholesterol domains with sizes and shapes comparable to those in the fluorescence microscopy literature. The results show that SM localizes with cholesterol and that palmitoyloleoylphosphatidylcholine is excluded. Moreover, the segregation is not complete, and there is a small amount of both phospholipids distributed throughout.  相似文献   

13.
Using a combination of fluorescence correlation and infrared absorption spectroscopies, we characterize lipid lateral diffusion and membrane phase structure as a function of protein binding to the membrane surface. In a supported membrane configuration, cholera toxin binding to the pentasaccharaide headgroup of membrane-incorporated GM1 lipid alters the long-range lateral diffusion of fluorescently labeled probe lipids, which are not involved in the binding interaction. This effect is prominently amplified near the gel-fluid transition temperature, Tm, of the majority lipid component. At temperatures near Tm, large changes in probe lipid diffusion are measured at average protein coverage densities as low as 0.02 area fraction. Spectral shifts of the methylene symmetric and asymmetric stretching modes in the lipid acyl chain confirm that protein binding alters the fraction of lipid in the gel phase.  相似文献   

14.
Herein, a rapid and simple gold nanoparticle based colorimetric and dynamic light scattering (DLS) assay for the sensitive detection of cholera toxin has been developed. The developed assay is based on the distance dependent properties of gold nanoparticles which cause aggregation of antibody-conjugated gold nanoparticles in the presence of cholera toxin resulting discernible color change. This aggregation induced color change caused a red shift in the plasmon band of nanoparticles which was measured by UV–Vis spectroscopy. In addition, we employed DLS assay to monitor the extent of aggregation in the presence of different concentration of cholera toxin. Our assay can visually detect as low as 10 nM of cholera toxin which is lower than the previously reported colorimetric methods. The reported assay is very fast and showed an excellent specificity against other diarrhetic toxins. Moreover, we have demonstrated the feasibility of our method for cholera toxin detection in local lake water.  相似文献   

15.
Quantitation of lipid storage, unsaturation, and oxidation in live C. elegans has been a long‐standing obstacle. The combination of hyperspectral stimulated Raman scattering imaging and multivariate analysis in the fingerprint vibration region represents a platform that allows the quantitative mapping of fat distribution, degree of fat unsaturation, lipid oxidation, and cholesterol storage in vivo in the whole worm. Our results reveal for the first time that lysosome‐related organelles in intestinal cells are sites for storage of cholesterol in C. elegans.  相似文献   

16.
In this paper the immobilization of small unilamellar DMPC/GM1 lipid vesicles containing a water-soluble bodipy dye is described. The binding of the complete alphabeta toxin expressed by Vibrio cholerae to the attached vesicles was measured using Surface Plasmon Resonance (SPR) and a value of the dissociation constant K d obtained. Further measurements showed that the interaction of both the alphabeta-toxin and the beta-subunit alone resulted in the permeation of the lipid membrane, with release of a fluorophore contained within the vesicle being measured by combined SPR and Surface Plasmon enhanced Fluorescence Spectroscopy (SPFS). The leakage of dye through the membrane, measured by following the change in fluorescence, was fitted to a simple diffusion model. Finally, SPFS measurements of the effect of europium(III) chloride (EuCl 3) showed that cholera toxin binding and subsequent membrane permeation could be blocked by 1 micromol dm (-3) europium chloride. In view of the low oral toxicity of europium chloride, we speculate on the potential pharmaceutical applications of this molecule in the treatment of cholera infection.  相似文献   

17.
The design and synthesis of two GM1 glycomimetics, 6 and 7, and analysis of their conformation in the free state and when complexed to cholera toxin is described. These compounds, which include an (R)-cyclohexyllactic acid and an (R)-phenyllactic acid fragment, respectively, display significant affinity for cholera toxin. A detailed NMR spectroscopy study of the toxin/glycomimetic complexes, assisted by molecular modeling techniques, has allowed their interactions with the toxin to be explained at the atomic level. It is shown that intramolecular van der Waals and CH-pi carbohydrate-aromatic interactions define the conformational properties of 7, which adopts a three-dimensional structure significantly preorganized for proper interaction with the toxin. The exploitation of this kind of sugar-aromatic interaction, which is very well described in the context of carbohydrate/protein complexes, may open new avenues for the rational design of sugar mimics.  相似文献   

18.
The synthesis of several non‐carbohydrate ligands of cholera toxin based on polyhydroxyalkylfuroate moieties is reported. Some of them have been linked to D ‐galactose through a stable and well‐tolerated S‐glycosidic bond. They represent a novel type of non‐hydrolyzable bidentate ligand featuring galactose and polyhydroxyalkylfuroic esters as pharmacophoric residues, thus mimicking the GM1 ganglioside. The affinity of the new compounds towards cholera toxin was measured by weak affinity chromatography (WAC). The interaction of the best candidates with this toxin was also studied by saturation transfer difference NMR experiments, which allowed identification of the binding epitopes of the ligands interacting with the protein. Interestingly, the highest affinity was shown by non‐carbohydrate mimics based on a polyhydroxyalkylfuroic ester structure.  相似文献   

19.
The five B-subunits (CTB5) of the Vibrio cholerae (cholera) toxin can bind to the intestinal cell surface so the entire AB5 toxin can enter the cell. Simultaneous binding can occur on more than one of the monosialotetrahexosylganglioside (GM1) units present on the cell surface. Such simultaneous binding arising from the toxins multivalency is believed to enhance its affinity. Thus, blocking the initial attachment of the toxin to the cell surface using inhibitors with GM1 subunits has the potential to stop the disease. Previously we showed that tetravalent GM1 molecules were sub-nanomolar inhibitors of CTB5. In this study, we synthesized a pentavalent version and compared the binding and potency of penta- and tetravalent cholera toxin inhibitors, based on the same scaffold, for the first time. The pentavalent geometry did not yield major benefits over the tetravalent species, but it was still a strong inhibitor, and no major steric clashes occurred when binding the toxin. Thus, systems which can adopt more geometries, such as those described here, can be equally potent, and this may possibly be due to their ability to form higher-order structures or simply due to more statistical options for binding.  相似文献   

20.
The influence of a double bond in the middle of an otherwise flexible hydrocarbon chain on the melting of such assemblies has been investigated by comparing the melting behavior of zinc stearate and zinc oleate. By monitoring features in the infrared spectra that are characteristic of the global conformation of the hydrocarbon chain, it is shown that the double bond effectively decouples the thermal evolution of conformational disorder in the chain segments on either side of the double bond and the melting of each of these segments in the assembly occurs as independent events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号