首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
采用溶液法制备了聚(氯乙烯-醋酸乙烯酯)(PVCAc)与热塑性聚醚型聚氨酯(TPU)的共混膜(PUV).通过FT-IR和DSC对膜的形态和相容性进行了研究.与聚氯乙烯(PVC)相比,PVCAc与TPU的相容性明显增强.将PUV膜浸没于H2O2-CoCl2溶液中25 d进行加速氧化实验,结果表明:PUV膜的氧化稳定性优于TPU和TPU/PVC的共混膜(PUC).此外,PUV膜的力学性能明显高于PUC膜.  相似文献   

2.
以超临界二氧化碳作为物理发泡剂,通过快速降压法制备聚乳酸(PLA)/热塑性聚氨酯(TPU)/二氧化硅(SiO2)纳米复合材料发泡样品。发泡样品的泡孔结构使用扫面电子显微镜进行观察。在低频区,SiO2增加PLA/TPU共混物的储能模量和复数黏度。SiO2的加入使PLA/TPU共混物发泡样品的泡孔直径减小、泡孔密度增大。SiO2对PLA/TPU共混物发泡样品泡孔结构的改善归因于SiO2的异相成核作用和对共混物流变性能的改善作用。  相似文献   

3.
聚偏氟乙烯-磺化聚醚砜相容性及其成膜性能   总被引:2,自引:1,他引:1  
研究了聚偏氟乙烯(PVDF)-磺化聚醚砜(SPES)的相容性及其成膜性能.首先通过溶解度参数、粘度法和目测法研究共混溶液的相容性,接着采用浊度法测定了共混溶液的热力学性质,最后采用浸没沉淀法制备了共混膜并探讨了成膜性能.结果显示,PVDF和SPES为部分相容体系,随着SPES含量的增加,共混溶液相容性逐渐减小,当SPES含量增加到50wt%时,体系发生分相.共混溶液的成膜性能良好,SPES含量增加有利于体系发生液液分相,生成高孔隙率膜,并且极大的提高了PVDF膜的亲水性和水通量.  相似文献   

4.
范忠雷  刘大壮 《应用化学》2017,34(11):1273-1278
用稀溶液粘度法研究了氯化聚丙烯与石油树脂、丙烯酸树脂和醇酸树脂间的相容性,并用α判据对相容性结果进行判别。结果显示,石油树脂/氯化聚丙烯的共混体系是相容的;丙烯酸树脂/氯化聚丙烯的共混体系是不相容的。而醇酸树脂与氯化聚丙烯的相容性情况复杂,由二者的组成决定。当m(醇酸树脂)∶m(氯化聚丙烯)1∶1时,体系是相容的;当m(醇酸树脂)∶m(氯化聚丙烯)1∶1时,体系是不相容的。通过共溶剂法和涂膜宏观特性对上述体系的相容性进行测定,所得结果与α判据的结果相符合,印证了稀溶液粘度法研究溶液中高分子间的相互作用来预测涂料树脂的相容性具有一定可行性。  相似文献   

5.
合成了一系列不同4-乙烯基吡啶含量的聚(甲基丙烯酸丁酯-co-4-乙烯基吡啶)(BVPy)共聚物,并对酚氧树脂(Phenoxy)的仲羟基进行了不同乙酰化程度的改性.用粘度法和激光光散射(LLS)研究了BVPy/改性Phenoxy共混物在溶液中的络合行为对氢键相互作用基团密度的依赖性,并用DSC研究了共混体系在本体中的相容性.将粘度法及LLS的结果结合起来,得到了改性Phenoxy/BVPy共混体系的不相容-相容-络合转变相图.在此基础上,用XPS初步考察了共混物的相容性对其表面组成的影响.结果表明,大分子间的络合相互作用可抑制共混物的表面富集.  相似文献   

6.
研究了注塑温度对聚甲醛(POM)/热塑性聚氨酯弹性体(TPU)共混物形态结构和力学性能的影响.实验结果表明,注塑温度影响POM基体相与TPU分散相的粘度比,195℃时两者粘度相当,在剪切流动过程中,TPU可在POM基体中形成条状分散相,可吸收较多的冲击能并阻止银纹的生长以及裂纹的产生,从而较大幅度提高共混物的缺口冲击强度.  相似文献   

7.
聚[(双-甘氨酸乙酯)膦腈]/聚酯共混相容性研究   总被引:2,自引:0,他引:2  
采用溶液混合法制备了聚[(双-甘氨酸乙酯)膦腈](PGP)与丙交酯均聚物(PLA)或丙交酯/乙交酯共聚物(PLGA)的共混体系,利用示差扫描量热仪、傅里叶红外光谱仪和相差显微镜研究了两体系的共混相容性。实验结果表明,PGP与PLA不相容,但通过氢键相互作用可与PLGA达到部分相容,且PGP/PLGA的共混相容性随着PLGA含量的增加而有所改善。  相似文献   

8.
通过开环共聚合,合成了3种不同单元比例的ε-己内酯(ε-CL)与L-丙交酯(L-LA)的共聚物P(CLco-LA)。通过熔融共混制备了聚乳酸(PLA)/聚己内酯(PCL)/P(CL-co-LA)三元共混材料,研究了P(CL-coLA)对共混材料微观形貌、热性能以及力学性能的影响。结果表明,共聚物P(CL-co-LA)作为PLA/PCL不相容体系的界面增容剂,减小了PCL分散相的尺寸,改善了PLA/PCL共混体系的相容性,提高了共混材料的韧性。固定m(PLA)∶m(PCL)∶m(P(CL-co-LA))=80∶20∶10时,以P(CL49/LA51)(其中数字代表摩尔分数(%))作为界面增容剂效果最佳,共混材料的断裂伸长率可达到(210±30)%。  相似文献   

9.
丁跃  卢波  季君晖 《化学进展》2020,32(6):738-751
随着能源危机和环境污染的日益严重,生物可降解塑料逐渐成为研究的趋势和热点。聚乳酸(PLA)具有良好的生物降解性、生物相容性、可再生性、高强度、易加工等优点,被认为是最有前途的生物降解聚合物之一。聚乳酸的延展性和冲击性能较差严重制约了PLA的应用,共混改性是一种经济有效的方法,从而解决其韧性不足的缺点。然而,PLA在热力学上与大多数聚合物不相容,为了获得性能优良的PLA共混材料,聚合物共混过程中需要加入一种有效的相容剂进行增容。近年来,PLA与不同聚合物共混时的相容性研究已取得一定进展,本文就其进展进行全面综述。  相似文献   

10.
研究了表面带有环氧基团的玻璃纤维(GF)对聚丙烯(PP)/热塑性聚氨酯(TPU)/多壁碳纳米管(MWCNT)、 聚甲基丙烯酸甲酯(PMMA)/TPU/MWCNT和聚乳酸(PLA)/TPU/MWCNT体系导电性能的影响. 研究结果表明, 未添加GF时, 由于MWCNTs选择性地分布在TPU分散相中, PP/TPU/MWCNT, PMMA/TPU/MWCNT和PLA/TPU/MWCNT材料的导电性能很差; 加入20%的GF使3个体系的电阻率均大幅度下降, 最高下降约13个数量级, 表明填充GF是一种具有普适性的改善以TPU为分散相的共混体系导电性能的有效方法. GF使体系电阻率降低的机理主要是形成了TPU包覆GF结构, 该结构可以看作长径比较高的导电棒, 可以有效协助导电通路的构建; 同时GF还起到了体积占位的作用, 提高了体系中导电组分在基体中的有效浓度.  相似文献   

11.
Melt blending of polylactide (PLA) and a biodegradable poly(ether)urethane (PU) elastomer has been performed in an effort to toughen the polylactide without compromising its biodegradability and biocompatibility. The miscibility, phase morphology, mechanical properties, and toughening mechanism of the blend were investigated. The blend was found by dynamic mechanical analysis to be a partially miscible system with shifted glass transition temperatures. The PU elastomer was dispersed in the PLA matrix with a domain size of sub-micrometer scale. The addition of PU elastomer not only accelerated the crystallization speed, but also decreased the crystallinity of the PLA. With an increase in PU content, the blend shows decreased tensile strength and modulus; however, the elongation at break and the impact strength were significantly increased, indicating the toughening effects of the PU elastomer on the PLA. The brittle fracture of neat PLA was gradually transformed into ductile fracture by the addition of PU elastomer. It was found that the PLA matrix demonstrates large area, plastic deformation (shear yielding) in the blend upon being subjected the tensile and impact tests, which is an important energy-dissipation process and leads to a toughened, biodegradable polymer blend.  相似文献   

12.
In this study, the effects of epoxidized palm oil (EPO) on the mechanical and morphological properties of a blend of two types of biodegradable polymer, poly(lactic acid) (PLA) and polycaprolactone (PCL), were investigated. The solution-casting process, with chloroform as a solvent, was used to prepare samples. Addition of EPO reduced the tensile strength and modulus but increased elongation at break for the PLA–PCL blend. The highest elongation at break was observed for the blend with 10 % (w/w) EPO content. Scanning electron microscopy (SEM) indicated that the fractured surface morphology of the PLA–PCL blend became more stretched and homogeneous in PLA–PCL–EPO. Possible interactions between the PLA–PCL blend and EPO were also characterized by use of Fourier-transform infrared (FTIR) spectroscopy. Thermal stability was studied by differential scanning calorimetry and thermogravimetric analysis. The results from FTIR and SEM revealed that the miscibility of the PLA–PCL blend was improved by addition of EPO.  相似文献   

13.
In this paper, we report a novel synthesis of poly(ethylene oxide monooleate-block-DL-lactide) (MOPEO-PLA) in the presence of stannous 2-ethylhexanoate catalyst. By utilizing the surfactant property and the reactive double bond of the amphiphilic MOPEO-PLA, various characteristics of PLA microspheres, such as surface and internal structure, surface morphology, release property, and so on, may potentially be controlled. MOPEO-PLA was found to be hydrophobic enough to prevent loss by dissolution into aqueous solution, which is often a problem for MOPEO. Furthermore, the interfacial tension measurements of a MOPEO-PLA/toluene/water system revealed that MOPEO-PLA had a good surface activity almost equal to that of MOPEO. The MOPEO-PLA/PLA blend films were prepared by solvent casting on a water layer. Contact-angle measurements of MOPEO-PLA/PLA blend films confirmed that the hydrophilic PEO segments were selectivity accumulated at the oil/water interface. Moreover, the surface free energy on the 'water side' of the MOPEO-PLA/PLA blend films was increased because of the increase in polar components as a result of the ether bonds of the PEO segments. Schematic illustration of the adsorption property of a) MOPEO-PLA with a high-molecular-weight PLA segment and b) MOPEO-PLA with a low-molecular-weight PLA segment at an ethyl acetate/water interface.  相似文献   

14.
The effect of halloysite nanotube (HNTs) particles and polyolefin elastomer-graft-maleic anhydride (POE-g-MA) in the polylactic acid (PLA) and polyolefin elastomer (POE) blend with a constant weight percentage composition have been studied using the scanning electron microscopy, rheometry, dynamic mechanical thermal analysis (DMTA) as well as the thermogravimetric testing. Through these, it was found that the simultaneous presence of POE-g-MA and HNT significantly improves the melt and solid viscoelastic properties and thermal stability of PLA/POE. This improvement is attributed to the increased interactions and improved interfacial adhesion between the present components. The microscopic images of PLA/POE-g-MA/POE (80/8/12) blend containing 4 wt% HNT showed a microstructure similar to the interconnected morphology due to the enhanced compatibility and better dispersion of nanoparticles. The rheological behavior was significantly changed for the PLA/POE blend containing POE-g-MA and 4 wt% HNT. This dramatic increase in the rheological properties was consistent with the morphological results. Only one glass transition temperature was observed in the DMTA plot of PLA/POE-g-MA/POE blend, which was a sign of a homogeneous, fully compatible system. In addition, a very strong reinforcing effect of HNT particles was observed in the presence of POE-g-MA for the nanocomposites. Finally, the thermogravimetric analysis showed a completely different trend for thermal degradation of PLA/POE-g-MA/POE nanocomposite containing 4 wt% HNT, which could be an indication of microstructural development.  相似文献   

15.
胡宽  江海  黄冬  刘畅  张坤玉  潘莉 《应用化学》2019,36(9):996-1002
以来源于可再生资源聚丁二酸丁二醇酯(PBS)和氯醚橡胶(ECO)作为聚乳酸(PLA)的增韧改性剂,通过熔融共混的方法制备了PLA/PBS/ECO三元共混体系。动态力学分析和扫描电子显微镜结果表明,ECO促进了PBS和PLA之间的相容性。力学性能测试表明,ECO与PBS可实现对聚乳酸基体的协同增韧: PLA/PBS/ECO(70/20/10)显示出最优的拉伸性能,断裂伸长率高达270%;PLA/PBS/ECO(70/10/20)的冲击强度提高至23.7 kJ/m2,是纯聚乳酸的12倍。结合形态结构和冲击断面形貌分析表明ECO的存在可起到增容/增韧双重作用, 与柔性PBS产生良好的协同效应,有效改善聚乳酸材料的韧性。我们的研究表明,构造PLA-柔性生物聚酯和生物基弹性体多元共混体系是一种获得高性能生物基材料简单高效的手段。  相似文献   

16.
采用自设计的双螺杆结构挤出制备聚乳酸(PLA)/醋酸淀粉(AS)的全生物降解材料,考察材料的AS的含量和取代度对复合材料动态流变性能、机械性能的影响。研究结果表明,AS含量明显影响复合材料的力学性能、复合黏度和储能模量:当AS含量从45%增加到70%,材料的拉伸强度下降,复数黏度和储能模量则提高。随着AS取代度由1.0上升为3.0,复合材料的复数黏度和储能模量下降,拉伸强度由12.0MPa上升为15.5MPa。对复合材料进行电镜扫描分析发现,AS以海岛结构形式分散在PLA的连续相中,取代度2.0的AS与PLA相容性最好,当其质量含量达到70%,材料的拉伸强度仍然不低于10.0MPa,具有较好的机械强度。  相似文献   

17.
The effect of montmorillonite clay (MMT) and/or chain extender (CE) on rheological, morphological and biodegradation properties of PLA/PBAT blend was investigated. The biodegradation behavior was evaluated by CO2 evolution in soil burial. CE incorporation resulted in an increase in the complex viscosity of PLA/PBAT blends, an increase in PLA crystallinity and a decrease in the dispersed phase diameter. MMT incorporation resulted in an increase in the complex viscosity, more pronounced shear-thinning behavior and a decrease in the dispersed phase diameter. CE incorporation resulted in a slight effect in the rheological properties of PLA/PBAT blend in the presence of MMT. Unfilled PLA/PBAT blend presented the highest amount of evolved CO2, and the micrographs indicated that degradation tends to occur on the surface. MMT delayed biodegradation of PLA/PBAT blends even although their surfaces presented some cracks and holes in a few localized regions. PLA/PBAT + CE blend presented the lowest amount of evolved CO2.  相似文献   

18.
Poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blends were prepared using a carboxylic acid salt as nucleating agent (NA). The effect of NA on the crystallization kinetics of PLA and PLA/PBS blend was investigated using a differential scanning calorimeter, a polarized optical microscope and a wideangle X-ray diffractometer. The crystallization rate of PLA component in PLA/PBS blends is increased effectively by NA through fast nucleation and growth rate of PLA α'-form crystal, which is confirmed by isothermal crystallization behavior of PLA/PBA/NA composites. The isothermal crystallization results also show that the incorporation of NA induces heterogeneous nucleation mechanism in PLA component. The increased number of crystal nuclei hinders the increase of average grain size of PLA component in composites but contributes to a higher crystallinity of both PLA and PBS components in PLA/PBS blends. Finally, the mechanical properties and dynamic mechanical properties of PLA/PBS/NA composites are improved because of the increased crystallinity, which are superior to that of PLA/PBS blend.  相似文献   

19.
This study reports the compatibility of the biobased polymers poly(3-hydroxybutyrate-co-3- -hydroxyhexanoate) (PHBH) and poly(lactic acid) (PLA), as well as the effect of the addition of a reactive epoxy compatibilizer (REC) to the PHBH/PLA blend. The chemical structure, thermal performance, surface morphology and mechanical properties of the blends were measured using fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic thermo-mechanical analysis, thermogravimetric analysis, scanning electron microscopy, and impact and tensile testing.PHBH and PLA were partially compatible, and a PHBH/PLA mass ratio of 80:20 was selected for evaluation with an REC. The REC decreased the difference between the glass-transition temperatures of PHBH and PLA, decreased the particle size of the dispersed phase of the PHBH/PLA blend and produced uniform particle distribution. Moreover, the REC improved the elongation at break and impact strength of the PHBH/PLA blend. These results show that the addition of an REC improves the compatibility of PHBH and PLA.  相似文献   

20.
Blends of amorphous poly(DL‐lactide) (DL‐PLA) and crystalline poly(L‐lactide) (PLLA) with poly(methyl methacrylate) (PMMA) were prepared by both solution/precipitation and solution‐casting film methods. The miscibility, crystallization behavior, and component interaction of these blends were examined by differential scanning calorimetry. Only one glass‐transition temperature (Tg) was found in the DL‐PLA/PMMA solution/precipitation blends, indicating miscibility in this system. Two isolated Tg's appeared in the DL‐PLA/PMMA solution‐casting film blends, suggesting two segregated phases in the blend system, but evidence showed that two components were partially miscible. In the PLLA/PMMA blend, the crystallization of PLLA was greatly restricted by amorphous PMMA. Once the thermal history of the blend was destroyed, PLLA and PMMA were miscible. The Tg composition relationship for both DL‐PLA/PMMA and PLLA/PMMA miscible systems obeyed the Gordon–Taylor equation. Experiment results indicated that there is no more favorable trend of DL‐PLA to form miscible blends with PMMA than PLLA when PLLA is in the amorphous state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 23–30, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号