首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
随着资源枯竭和环境污染严重问题的凸显,生物质转化的研究越来越多,特别是生物质催化裂解制备生物燃料及高附加值的化学品.糠醛是一种半纤维素酸解的产物,也是生产糠醇、四氢糠醇、2-甲基呋喃、环戊酮等的重要原料.其中四氢糠醇既可以用于生产其他高附加值化学品,也可以用作生物燃料或者燃料添加剂.虽然Pd/MFI,Ni/SiO_2,Pd-Ir/SiO_2等催化剂均可用于糠醛选择加氢制备四氢糠醇,但是反应通常在高温高压条件下进行.为此我们希望找到一种在温和条件下使用的高效催化剂.MOF多孔材料具有丰富的孔道结构、极高的比表面积、表面可修饰的特点,还可与其他客体发生相互作用,进而影响催化性能.因此本课题组合成了一种含有氨基的MOF材料MIL-101(Cr)-NH_2,进一步利用表面氨基吸附Pd的氯酸盐前体,经还原直接制得负载型催化剂Pd@MIL-101(Cr)-NH_2,并用于糠醛选择加氢反应.本文采用X射线粉末衍射(PXRD)、热重分析(TG)、N2物理吸附-脱附、透射电镜(TEM)等手段表征了所制的MOFs和催化剂.通过将MIL-101(Cr)-NH_2和不同Pd@MIL-101(Cr)-NH_2的XRD谱与标准谱图对比,发现MIL-101(Cr)-NH_2已成功合成,并在催化剂制备过程中和反应之后仍然保持稳定.TG结果表明,所制备MIL-101(Cr)-NH_2在低于350°C时结构不会被破环.MIL-101(Cr)-NH_2的比表面积可达到1669 m~2 g~(-1),孔容达1.35 cm~3 g~(-1),从而为Pd纳米粒子均匀分散在载体上提供了可能性.各Pd@MIL-101(Cr)-NH_2样品的TEM照片我们看出,Pd纳米粒子可均匀分散在MIL-101(Cr)-NH_2上,粒径为3-4 nm.对比实验表明,氨基与金属的相互作用有利于Pd纳米粒子分散均匀.将Pd@MIL-101(Cr)-NH_2用于糠醛选择加氢反应时,在40℃,2 MPaH_2的温和条件下,反应6 h后糠醛完全转化为四氢糠醇其选择性接近100%.表现出比文献报导的更加优异的催化性能.这得益于高度均匀分散的Pd纳米粒子,以及催化剂载体与Pd纳米粒子的配位作用和π-π相互作用.结果还表明当高于80℃反应时,即有副产物生成,进一步提高反应温度会促进环戊酮的生成.可见,Pd@MIL-101(Cr)-NH_2所表现的低温高加氢活性对提高四氢糠醇选择性至关重要.  相似文献   

2.
制备了多种金属-有机骨架(MOF)材料,采用浸渍-化学还原法制备了非晶态Ru-B/MOF催化剂,考察了它们在苯部分加氢反应中的催化性能.催化性能评价结果表明,这些催化剂的初始反应速率(r0)顺序为Ru-B/MIL-53(Al)Ru-B/MIL-53(Al)-NH2Ru-B/UIO-66(Zr)Ru-B/UIO-66(Zr)-NH2Ru-B/MIL-53(Cr)Ru-B/MIL-101(Cr)Ru-B/MIL-100(Fe),环己烯初始选择性(S0)顺序为Ru-B/MIL-53(Al)≈Ru-B/MIL-53(Cr)Ru-B/UIO-66(Zr)-NH2Ru-B/MIL-101(Cr)Ru-B/MIL-53(Al)-NH2Ru-B/UIO-66(Zr)≈Ru-B/MIL-100(Fe).催化性能最好的Ru-B/MIL-53(Al)催化剂上的r0和S0分别为23 mmol·min-1·g-1和72%.采用多种手段,对催化性能差异最为显著的Ru-B/MIL-53(Al)和Ru-B/MIL-100(Fe)催化剂的物理化学性质进行了表征.发现MIL-53(Al)载体能够更好地分散Ru-B纳米粒子,粒子的平均尺寸为3.2 nm,而MIL-100(Fe)载体上Ru-B纳米粒子团聚严重,粒径达46.6 nm.更小的粒径不仅能够提供更多的活性位,而且也有利于环己烯选择性的提高.对Ru-B/MIL-53(Al)催化剂的反应条件进行了优化,在180°C和5 MPa的H2压力下,环己烯得率可达24%,展示了MOF材料用作苯部分加氢催化剂载体的良好前景.  相似文献   

3.
采用简单易行的浸渍法将Pt纳米粒子负载到MIL-101(Cr)上,制备了Pt/MIL-101(Cr)催化剂,并对其在肉桂醛选择性加氢反应的催化性能进行了研究。XRD、N2吸附、TEM和催化性能的研究结果表明,Pt的负载量对负载于MIL-101(Cr)上Pt纳米粒子的尺寸及所制备催化剂对肉桂醇的选择性有很大影响。低Pt负载量(1.0%)的Pt/MIL-101(Cr)较其他MOFs和无机材料在肉桂醛选择性加氢反应中表现出了高的催化性能,在优化的反应条件下肉桂醛转化率和对肉桂醇的选择性可分别达96.5%和86.2%。Pt/MIL-101(Cr)催化剂具有良好的稳定性。Pt/MIL-101(Cr)所表现出的优良的催化性能同MIL-101(Cr)载体的孔道结构及其表面性质密切相关。  相似文献   

4.
采用简单易行的浸渍法将Pt纳米粒子负载到MIL-101(Cr)上, 制备了Pt/MIL-101(Cr)催化剂, 并对其在肉桂醛选择性加氢反应的催化性能进行了研究。XRD、N2吸附、TEM和催化性能的研究结果表明, Pt的负载量对负载于MIL-101(Cr)上Pt纳米粒子的尺寸及所制备催化剂对肉桂醇的选择性有很大影响。低Pt负载量(1.0wt%)的Pt/MIL-101(Cr)较其他MOFs和无机材料在肉桂醛选择性加氢反应中表现出了高的催化性能, 在优化的反应条件下肉桂醛转化率和对肉桂醇的选择性可分别达96.5%和86.2%。Pt/MIL-101(Cr)催化剂具有良好的稳定性。Pt/MIL-101(Cr)所表现出的优良的催化性能同MIL-101(Cr)载体的孔道结构及其表面性质密切相关。  相似文献   

5.
金属有机骨架(MOFs)材料是一种新型的沸石类多孔材料,是由金属离子和有机配体通过配位键键合而成的拓扑结构.相比其他多孔材料,MOFs拥有更高的比表面积、孔隙率以及结构可调控性.在催化方面,MOFs复合材料在多相催化领域已经引起了广泛的研究兴趣.贵金属纳米颗粒是一种在化学、化工、生物和医学等许多领域有着广泛应用的高性能材料.但是,催化反应往往都是发生在纳米颗粒的表面,而位于颗粒内部的金属没能得到利用;从原子经济性的角度来看,以廉价金属作核、贵金属作壳的双金属纳米粒子能有效解决这个问题,而且还能利用双金属之间的协调作用.目前文献中也已经报道了多种非贵金属和贵金属组成的核壳双金属纳米粒子,都展现出了比单纯贵金属更好的催化活性.芳香胺类化合物是一种在工业上非常重要的有机中间体,广泛应用于农药、药物、染料和色素等等.目前,商业化生产的芳香胺化合物都是通过计量的还原剂,如连二硫酸钠、硼氢化钠、水合肼和氨水中的铁、锡、锌等非催化还原相应的芳硝基化合物得到,这样往往会带来严重的环境污染问题.而通过多相催化加氢还原方法来制备芳香胺化合物,不仅能高效催化芳硝基化合物加氢,而且催化剂可以回收利用,大大降低反应对环境的污染.本文综合贵金属原子经济观点和芳硝基类化合物加氢反应催化剂设计,在油胺和三正辛基膦中通过热还原二价的镍和钯,制备出以Ni为核Pd为壳的双金属纳米粒子.通过透射电镜观察,镍钯核壳纳米粒子的粒径约为8-9 nm.选用具有高比表面积和高稳定性的金属有机骨架材料MIL-101作为载体,通过浸渍法首次将镍钯核壳纳米粒子负载在MIL-101上制备出不同Ni:Pd比的Ni@Pd/MIL-101复合材料.利用X射线粉末衍射(XRD)、N2吸附-脱附、红外光谱、透射电子显微镜和X射线能谱对复合材料结构进行了表征.从XRD谱图能看出负载纳米粒子后的MIL-101材料结构依然保持完整,表明催化剂制备过程不会破坏载体结构.红外光谱测试结果表明,负载了镍钯纳米粒子的Ni@Pd/MIL-101复合材料中含有两种C-H键伸缩振动2852和2926 cm-1处两个特征峰,分别对应于-CH2-和-CH3中C-H键的特征吸收峰,可能是残留的油胺,也可能是三正辛基膦在与镍和钯形成配合物时的残留.X射线能谱测试发现,N元素在负载后已不存在,而P元素依旧存在,结合红外光谱可以确认,纳米粒子在负载前后三正辛基膦依然与纳米粒子稳定络合,进而可被MIL-101上未饱和的Cr固定.通过透射电镜可以观察到镍钯核壳纳米粒子高度分散在载体上.将Ni@Pd/MIL-101材料应用于硝基苯催化加氢反应.在30℃,0.1 MPa H2条件下,0.26% Ni@0.46%Pd/MIL-101催化剂具有最高的加氢活性,其转换频率(TOF)值最高可达375 h-1,是单金属负载钯催化剂的近2倍,展示出非贵金属替代部分贵金属的可行性.在循环使用方面,重复使用5次后的Ni@Pd/MIL-101催化剂依然保持较高的催化活性和选择性.同时考察了底物的兼容性,该催化体系对多种不同基团(包括不饱和基团)取代的硝基苯化合物的催化加氢,大都表现出很高的催化活性和选择性,TOF值最高可达495 h-1.  相似文献   

6.
金属有机骨架(MOFs)材料是一种新型的沸石类多孔材料,是由金属离子和有机配体通过配位键键合而成的拓扑结构.相比其他多孔材料,MOFs拥有更高的比表面积、孔隙率以及结构可调控性.在催化方面,MOFs复合材料在多相催化领域已经引起了广泛的研究兴趣.贵金属纳米颗粒是一种在化学、化工、生物和医学等许多领域有着广泛应用的高性能材料.但是,催化反应往往都是发生在纳米颗粒的表面,而位于颗粒内部的金属没能得到利用;从原子经济性的角度来看,以廉价金属作核、贵金属作壳的双金属纳米粒子能有效解决这个问题,而且还能利用双金属之间的协调作用.目前文献中也己经报道了多种非贵金属和贵金属组成的核壳双金属纳米粒子,都展现出了比单纯贵金属更好的催化活性.芳香胺类化合物是一种在工业上非常重要的有机中间体,广泛应用于农药、药物、染料和色素等等.目前,商业化生产的芳香胺化合物都是通过计量的还原剂,如连二硫酸钠、硼氢化钠、水合肼和氨水中的铁、锡、锌等非催化还原相应的芳硝基化合物得到,这样往往会带来严重的环境污染问题.而通过多相催化加氢还原方法来制备芳香胺化合物,不仅能高效催化芳硝基化合物加氢,而且催化剂可以回收利用,大大降低反应对环境的污染.本文综合贵金属原子经济观点和芳硝基类化合物加氢反应催化剂设计,在油胺和三正辛基膦中通过热还原二价的镍和钯,制备出以Ni为核Pd为壳的双金属纳米粒子.通过透射电镜观察,镍钯核壳纳米粒子的粒径约为8-9 nm.选用具有高比表面积和高稳定性的金属有机骨架材料MIL-101作为载体,通过浸渍法首次将镍钯核壳纳米粒子负载在MIL-101上制备出不同Ni:Pd比的Ni@Pd/MIL-101复合材料.利用X射线粉末衍射(XRD)、N_2吸附-脱附、红外光谱、透射电子显微镜和X射线能谱对复合材料结构进行了表征.从XRD谱图能看出负载纳米粒子后的MIL-101材料结构依然保持完整,表明催化剂制备过程不会破坏载体结构.红外光谱测试结果表明,负载了镍钯纳米粒子的Ni@Pd/MIL-101复合材料中含有两种C-H键伸缩振动2852和2926 cm~(-1)处两个特征峰,分别对应于-CH_2-和-CH_3中C-H键的特征吸收峰,可能是残留的油胺,也可能是三正辛基膦在与镍和钯形成配合物时的残留.X射线能谱测试发现,N元素在负载后己不存在,而P元素依旧存在,结合红外光谱可以确认,纳米粒子在负载前后三正辛基膦依然与纳米粒子稳定络合,进而可被MIL-101上未饱和的Cr固定.通过透射电镜可以观察到镍钯核壳纳米粒子高度分散在载体上.将Ni@Pd/MIL-101材料应用于硝基苯催化加氢反应.在30℃,0.1 MPaH_2条件下,0.26%Ni@0.46%Pd/MIL-101催化剂具有最高的加氢活性,其转换频率(TOF)值最高可达375 h~(-1),是单金属负载钯催化剂的近2倍,展示出非贵金属替代部分贵金属的可行性.在循环使用方面,重复使用5次后的Ni@Pd/MIL-101催化剂依然保持较高的催化活性和选择性.同时考察了底物的兼容性,该催化体系对多种不同基团(包括不饱和基团)取代的硝基苯化合物的催化加氢,大都表现出很高的催化活性和选择性,TOF值最高可达495 h~(-1).  相似文献   

7.
徐缓  张茂元  黄香  史大斌 《分子催化》2017,31(5):472-479
水热合成MIL-101,过量浸渍法吸附Pd(OAc)_2,原位还原Pd~(2+)制得Pd/MIL-101催化剂.采用XRD、XPS、SEM、ICP、HRTEM和N_2吸/脱附实验对其结构进行表征,催化剂Pd纳米粒子尺寸在1.5~2.5 nm之间,含量为1.5%.催化实验表明,Pd/MIL-101能高效催化吲哚C_2位芳基化,对于活性较差的溴代芳烃,也能得到中等以上的收率,催化剂循环5次后仍能保持较高的反应活性,发展了吲哚C_2位衍生物的简单、高效的合成方法.  相似文献   

8.
通过等体积浸渍法制备了金属有机骨架材料MIL-53(Al) (MIL:Materials of Institut Lavoisier)负载纳米Pd催化剂. 采用X射线衍射(XRD)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等手段对催化剂的结构进行了表征. 催化剂在反应前后XRD衍射峰保持不变,说明载体MIL-53(Al)具有良好的稳定性. 采用TEM对催化剂进行表征,结果表明,MIL-53(Al)的多孔晶体结构有助于形成高度分散的纳米Pd颗粒,样品2.7% (w) Pd/MIL-53 中Pd颗粒的平均粒径为2.21 nm. 该催化剂在CO氧化反应中表现出较高的催化活性,115 ℃达到完全转化. 同时催化剂可循环使用,多次反应后催化活性和催化剂结构都保持稳定.  相似文献   

9.
通过等体积浸渍法制备了金属有机骨架材料MIL-53(Al)(MIL:Materials of Institut Lavoisier)负载纳米Pd催化剂.采用X射线衍射(XRD)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等手段对催化剂的结构进行了表征.催化剂在反应前后XRD衍射峰保持不变,说明载体MIL-53(Al)具有良好的稳定性.采用TEM对催化剂进行表征,结果表明,MIL-53(Al)的多孔晶体结构有助于形成高度分散的纳米Pd颗粒,样品2.7%(w)Pd/MIL-53中Pd颗粒的平均粒径为2.21 nm.该催化剂在CO氧化反应中表现出较高的催化活性,115°C达到完全转化.同时催化剂可循环使用,多次反应后催化活性和催化剂结构都保持稳定.  相似文献   

10.
利用MIL-101有序纳米孔道的限域能力,制备出一系列尺寸较小且分散度均匀的Au纳米颗粒Au@MIL-101催化剂,通过X射线衍射、高分辨透射电子显微镜、物理吸附仪和原子发射光谱仪对该催化剂进行了表征.该催化剂在温和的反应条件下对对硝基苯酚加氢反应表现出良好的催化活性.  相似文献   

11.
Palladium nanoparticles (NPs) of different mean particle size have been synthesized in the host structure of the porous coordination polymer (or metal-organic framework: MOF) MIL-101. The metal-organic chemical vapor deposition method was used to load MIL-101 with the Pd precursor complex [(η(5)-C(5)H(5))Pd(η(3)-C(3)H(5))]. Loadings higher than 50 wt.% could be accomplished. Reduction of the Pd precursor complex with H(2) gave rise to Pd NPs inside the MIL-101 (Pd@MIL-101). The reduction conditions, especially the temperature, allows us to make size-conform (size of the Pd NPs correlates with the size of the cavities of the host structure of MIL-101) and undersized Pd NPs. The Pd@MIL-101 samples were characterized by X-ray diffraction, IR spectroscopy, Brauner-Emmett-Teller (BET) analysis, elemental analysis, and transmission electron microscopy (TEM). Catalytic studies, hydrogenation of ketones, were performed with selected Pd@MIL-101 catalysts. Activity, selectivity, and recyclability of the catalyst family are discussed.  相似文献   

12.
A bifunctional MOF catalyst containing coordinatively unsaturated Cr(3+) sites and palladium nanoparticles (Pd@MIL-101) has been used for the cyclization of citronellal to isopulegol and for the one-pot tandem isomerization/hydrogenation of citronellal to menthol. The MOF was found to be stable under the reaction conditions used, and the results obtained indicate that the performance of this bifunctional solid catalyst is comparable with other state-of-the-art materials for the tandem reaction: Full citronellal conversion was attained over Pd@MIL-101 in 18 h, with 86% selectivity to menthols and a diastereoselectivity of 81% to the desired (-)-menthol, while up to 30 h were necessary for attaining similar values over Ir/H-beta under analogous reaction conditions.  相似文献   

13.
A novel Pd−NHC functionalized metal–organic framework (MOF) based on MIL-101(Cr) was synthesized and used as an efficient heterogeneous catalyst in the C-C bond formation reactions. Using this heterogeneous Pd catalyst system, the Suzuki−Miyaura coupling reaction was accomplished well in water, and coupling products were obtained in good to excellent yields in short reaction time. The Pd−NHC−MIL-101(Cr) was characterized using some different techniques, including Fourier transform-infrared, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, inductively coupled plasma and elemental analysis. The microscopic techniques showed the discrete octahedron structure of MIL-101(Cr), which is also stable after chemical modification process to prepare the catalyst system. The TEM images of the catalyst showed the existence of palladium nanoparticles immobilized in the structure of the catalyst, while no reducing agent was used. It seems that the NHC groups and imidazolium moieties in the structure of the MOF can reduce Pd (II) to Pd (0) species. This modified MOF substrate can also prevent aggregation of Pd nanoparticles, resulting in high stability of them in organic transformation. The Pd−NHC−MIL-101(Cr) catalyst system could be simply extracted from the reaction mixture, providing an efficient synthetic method for the synthesis of biaryls derivatives using the aforementioned coupling reaction. The Pd−NHC−MIL-101(Cr) catalyst could be recycled in this organic reaction with almost consistent catalytic efficiency.  相似文献   

14.
Highly dispersed palladium nanoparticles (Pd NPs) encapsulated in the mesoporous cages of the metal-organic framework (MOF) MIL-101(Cr) have been prepared by using the wetness impregnation method. The Pd NPs were characterized by powder X-ray diffraction (PXRD), N(2) adsorption, transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). The particles size ((2.6±0.5) nm) of the obtained Pd NPs was in good agreement with the cage diameters (2.9 and 3.4 nm) of the MOF. The resulting Pd/MIL-101(Cr) catalyst exhibited extremely high catalytic activities in the direct C2 arylation of substituted indoles by using only 0.1 mol% of the Pd catalyst. Moreover, the catalyst is easily recoverable and can be reused several times without leaching into solution and loss of activity. The combination of the highly dispersible Pd NPs within the accessible mesoporous cages and the favorable adsorption of the aryl halides on MIL-101 are suspected to be the main reasons for the observed high activities of the Pd/MIL-101(Cr) catalyst in the direct C2 arylation of indoles.  相似文献   

15.
糠醇是一种重要的高附加值化学品,目前工业上由含半纤维素或木聚糖的生物质原料经过酸脱水先制备糠醛,糠醛再进一步加氢制备糠醇.在实际生产中,这两步反应分别在不同的设备中进行,增加了分离纯化和运输成本;目前也很少有研究偶联这两步反应.本工作中,我们制备了一种多功能介孔Cu/SBA-15-SO3H催化剂用于一锅法一步转化木糖到糠醛,并且通过X射线粉末衍射(XRD)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FT-IR)、热重分析(TGA)、电感耦合等离子体发射光谱(ICP-OES)、X射线荧光(XRF)、NH3-程序升温脱附(NH3-TPD)和N2物理吸附等表征检测了负载的酸和金属位点的可用性以及催化剂的物理化学性质,优化了反应温度、氢气压力、反应时间和溶剂体系等反应条件,研究了酸和金属位点的比例以及介孔尺寸对合成糠醇的影响.XRD表征和TEM及HRTEM图像均表明,在负载了磺酸和Cu之后,均会一定程度上破坏SBA-15的形貌,但是依然可以保持原本的有序介孔结构.XPS表明还原后的Cu主要以+1价的形式存在,也有少量的0价和+2价.红外光谱表明磺酸基团和SBA-15载体以共价键形式紧密结合.氮气吸脱附和相关的BET和BJH计算表明,我们的原位制备方法相比于传统浸渍法,磺酸位点的含量提高了7倍以上.通过对反应条件的优化,该体系在140℃和4MPaH2下可以实现62.6%的糠醇收率.过高的温度会引起产物过度加氢生成2-甲基呋喃,而过高的压力会导致原料过度加氢生成木糖醇.合适的溶剂也是反应的关键因素,使用1:3的水/丁醇双相体系,一方面可以有效促进糖的溶解,另一方面可以有效萃取产物,保证了反应的碳平衡.在对催化剂的筛选中发现,单独的SBA-15几乎无催化活性,Cu/SBA-15主要催化木糖加氢生成木糖醇,SBA-15-SO3H主要催化木糖脱水生成糠醛,而物理混合的Cu/SBA-15和SBA-15-SO3H的效率远不如双功能Cu/SBA-15-SO3H催化剂.通过调节磺酸含量和探究产物时间曲线发现,提高酸性位点可以促进木糖转化,但是过多的酸性位点会导致结焦,降低糠醇收率.共同存在的磺酸酸性位点和铜金属位点保持平衡,协同催化串联反应进行.通过调节SBA-15的孔道结构发现,4 nm的孔道最适合反应进行,孔道过大会降低反应的整体碳收率和糠醇收率.本催化体系实现了从木糖一锅多步法制糠醇,并对催化剂的构效关系进行了研究,对反应条件进行了系统的优化,有希望实际应用到糠醇生产中.  相似文献   

16.
In this study, metal organic framework (MOF)–organic polymer monoliths prepared via a 5-min microwave-assisted polymerization of ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) with the addition of various weight percentages (30–60%) of porous MOF (MIL-101(Cr)) were developed as stationary phases for capillary electrochromatography (CEC) and nano-liquid chromatography (nano-LC). Powder X-ray diffraction (PXRD) patterns and nitrogen adsorption/desorption isotherms of these MOF–organic polymer monoliths showed the presence of the inherent characteristic peaks and the nano-sized pores of MIL-101(Cr), which confirmed an unaltered crystalline MIL-101(Cr) skeleton after synthesis; while energy dispersive spectrometer (EDS) and micro-FT-IR spectra suggested homogenous distribution of MIL-101(Cr) in the MIL-101(Cr)–poly(BMA–EDMA) monoliths. This hybrid MOF–polymer column demonstrated high permeability, with almost 800-fold increase compared to MOF packed column, and efficient separation of various analytes (xylene, chlorotoluene, cymene, aromatic acids, polycyclic aromatic hydrocarbons and trypsin digested BSA peptides) either in CEC or nano-LC. This work demonstrated high potentials for MOF–organic polymer monolith as stationary phase in miniaturized chromatography for the first time.  相似文献   

17.
Metal–organic frameworks (MOFs) hybrid composites have recently attracted considerable attention in hydrogen storage applications. In this study a hybrid composite of zeolite templated carbon (ZTC) and Cr-based MOF (MIL-101) was synthesised by adding the templated carbon in situ during the synthesis of MIL-101(Cr). The obtained sample was fully characterized and hydrogen adsorption measurements performed at 77 K up to 1 bar. The results showed that the surface areas and the hydrogen uptake capacities of individual MIL-101 (2552 m2 g?1, 1.91 wt%) and zeolite templated carbon (2577 m2 g?1, 2.39 wt%) could be enhanced when a hybrid MIL-101(Cr)/ZTC composite (2957 m2 g?1, 2.55 wt%) was synthesized. The procedure presents a simple way for enhancement of hydrogen uptake capacity of the individual Cr-MOF and templated carbon samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号