首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Internal reorganization energies for self-exchange hole-transfer process were calculated at the B3LYP/6-31G(d) level of theory for a series of oligothiophenes and oligoselenophenes up to the 50-mers. This is the first study of reorganization energy in very long pi-conjugated systems. We observed a linear correlation between reorganization energy and the reciprocal chain length for these long pi-conjugated heterocyclic oligomers, which can be explained by the changes in bond length that occur between the neutral and cation radical species and by the charge distribution in the cation radicals. In contrast to the saturation behavior observed for the HOMO-LUMO gaps of long pi-conjugated heterocyclic oligomers, the reorganization energy does not show saturation behavior for any length of the oligomers in this study, even up to the 50-mers. Interestingly, the reorganization energy approaches zero for infinite numbers of oligomer units (at the B3LYP/6-31G(d) level of theory), that is, for polythiophene and polyselenophene. The absolute values of the reorganization energies of oligoselenophenes, and the changes that occur in those energies with chain length, are similar to those found for oligothiophenes.  相似文献   

2.
Molecular geometries and electronic properties of 3-alkylthiophenes (ATs) and their oligomers (OATs) are studied by the density functional theory (DFT). Calculations are performed on the oligomers formed by n repeating units, where n ranges from 1 to 6, using the B3LYP/6-31G** level of theory. The results obtained show that the doped oligomers have more satisfactory structural and electronic characteristics for the conducting polymers. The conjugated system in the doped oligomers has more aromaticity, with expanded and planar chains. The calculated energy gap values between the frontal orbitals and also the ionization potential values for the oligomers indicate that with increase in the oligomer chain length, the conductive band gap decreases. Furthermore, our calculations suggest that an electron-donating alkyl substituent at position 3 of the thiophene ring plays an important role in the structural and electronic properties of the polymers.  相似文献   

3.
Cyclic oligothiophenes (CnT, n = 6-30, even only) in syn- and anti-conformations are studied theoretically at the B3LYP/6-31G(d) level of theory. Strain energies, ionization potentials, HOMO-LUMO gaps, bond length alternations, NICS values, and IR and Raman spectra have been studied. The properties of anti-conformers change systematically with increasing ring size and were studied in detail in neutral, radical cation, and dication forms. In syn-conformation, the oligomers lose their nearly planar ring shape and bend significantly for n > 14, and thus properties cannot be related to ring size. The HOMO-LUMO gap in C14T-syn is even lower than polythiopehene. IR and Raman spectra calculated at the B3LYP/6-31G(d) level are used to differentiate syn- from anti-conformations. The properties of cyclic oligomers are compared to those of the linear system, and cyclic oligothiophenes are revealed as good models for polythiophene. To assist the experimental study of known cyclic oligomers having dibutyl substituents on alternate thiophene rings, the corresponding dimethyl-substituted oligomers are also studied. The experimentally evaluated HOMO-LUMO gaps for alternately dibutyl-substituted cyclic oligomers match the calculated values; however, they are significantly higher than those of the unsubstituted analogues.  相似文献   

4.
Small band gap polymers may increase the energy conversion efficiency of polymer solar cells by increased absorption of sunlight. Here we present a combined experimental and theoretical study on the optical and electrochemical properties of a series of well-defined, lengthy, small band gap oligo(5,7-bis(thiophen-2-yl)thieno[3,4-b]pyrazine)s ( E g = 1.50 eV) having alternating donor and acceptor units. The optical absorptions of the ground state, triplet excited state, radical cation, and dication are identified and found to shift to lower energy with increasing chain length. The reduction of the band gap in these alternating small band gap oligomers mainly results from an increase of the highest occupied molecular orbital (HOMO) level. The S 1-T 1 singlet-triplet splitting is reduced from approximately 0.9 eV from the trimeric monomer to -0.5 eV for the pentamer. This significant exchange energy is consistent with the fact that both the HOMO and the lowest unoccupied molecular orbital (LUMO) remain distributed over virtually all units, rather than being localized on the D and A units.  相似文献   

5.
The bicyclo[2.2.2]oct-2-ene radical cation (1(.+)) exhibits matrix ESR spectra that have two very different types of gamma-exo hydrogens (those hydrogens formally in a W-plan with the alkene pi bond), a(2H) about 16.9 G and a(2H) about 1.9 G, instead of the four equivalent hydrogens as would be the case in an untwisted C(2v) structure. Moreover, deuterium substitution showed that the vinyl ESR splitting is not resolved (and under about 3.5 G); this is also a result of the twist. Enantiomerization of the C(2) structures is rapid on the ESR timescale above 110 K (barrier estimated at 2.0 kcalmol(-1)). Density functional theory calculations estimate the twist angle at the double bond to be 11-12 degrees and the barrier as 1.2-2.0 kcalmol(-1). Single-configuration restricted Hartree-Fock (RHF) calculations at all levels that were tried give untwisted C(2v) structures for 1(.+), while RHF calculations that include configuration interactions (CI) demonstrate that this system undergoes twisting because of a pseudo Jahn-Teller effect (PJTE). Significantly, twisting does not occur until the sigma-orbital of the predicted symmetry is included in the CI active space. UHF calculations at all levels that include electron correlation (even semiempirical) predict twisting at the alkene pi bond because they allow the filled alpha and the beta hole of the SOMO to have different geometries. The 2,3-dimethylbicyclo[2.2.2]oct-2-ene radical cation (2(.+)) is twisted significantly less than 1(.+), but has a similar temperature for maximum line broadening. Neither the 2,3-dioxabicyclo[2.2.2]octane radical cation (3(.+)) nor its 2,3-dimethyl-2,3-diaza analogue (5(.+)) shows any evidence of twisting. Calculations show that the orbital energy gap between the SOMO and PJTE-active orbitals for 3(.+) is too large for significant PJTE stabilization to occur.  相似文献   

6.
The bond length alternation (BLA) and energy band gap of polyyne are investigated by various first-principles theories, including Hartree-Fock, MP2, hybrid, and nonhybrid density functional theories. Both solid-state calculations utilizing periodic boundary conditions on polymers and molecular quantum mechanical calculations on extra-long oligomers were performed with consistent results. By validation on similar linear conjugated polymers, polyacetylene and polydiacetylene, the combination of hybrid-DFT schemes, B3LYP//BHandHLYP or B3LYP//KMLYP, is shown to give the best predictions for both geometry and band gap of polyyne based on available experimental data. We conclude that the best estimate of the BLA of polyyne is about 0.13 A and that of the band gap is about 2.2 eV.  相似文献   

7.
王继芬  封继康  徐金球 《化学学报》2007,65(10):894-898
用B3LYP/6-31G对低聚物(PV)n (PV=1,4-phenylene vinylene, n=2~8)和(PVSD)n (PVSD=2-(1,4-phenylene vinylene)-10-vinylene-spirocyclohexane-1,6-dibenzo[d,f](1,3)dioxepin, n=1~4)体系进行了全优化并分析其结构特点, (PV)n (n=2~8)体系的结构中所有相邻C原子间形成的二面角均小于1°, 即所有原子有共面的趋势. 而在(PVSD)n (n=1~4)体系中低聚物的七元环处有较大的二面角, 约38°, 即在此处结构存在较大的扭曲. 这种扭曲结构对其光谱性质有较大的影响. 在优化结构的基础上分析了两系列低聚物的HOMO-LUMO能隙随n递增的变化规律和对光谱性质的影响, 推断高聚物的发光性质. 同时用ZINDO, TD-DFT方法计算这两系列低聚物的能隙和吸收光谱, 并将低聚物的这些性质与链长的倒数作图外推得到相应的高聚物的能带隙和吸收光谱最大吸收波长. 根据外推能带的曲线估算了聚合物的有效共轭链长. 结果说明, 在(PVSD)n (n=∞)中的扭曲结构特点导致其相对(PV)n (n=∞)的有效共轭链长变短, 能带隙变宽, 吸收光谱蓝移.  相似文献   

8.
The structures and electronic states of a series of phenyl-capped oligothiophenes (PnTs) and their ionic species were investigated by means of the density functional theory (DFT). The calculations were performed on the oligomers formed by n repeating units, where n ranges from 2 to 6, using the B3LYP/6-31G** level of theory. The results obtained show that the end-substitution plays a fine-tuning effect on the geometries, electronics, and excitation states. It was found that the oligomers in the doped state have more satisfactory structural and electronic characteristics for the conducting polymers. The conjugated system in the doped oligomers has more aromaticity, with expanded and planar chains. The calculated energy gap values between the frontal molecular orbitals for the PnTs indicate that with increasing the oligomer chain length, the conductive band gap decreases. The calculated ?rst excitation energies of the PnTs at the TD-B3LYP/6-31G** level reveal that the doped PnTs have lower excitation energies than the neutral states. The oligomer chains with a phenyl ring as the end-capped group display red shifts in their absorption spectra. The end-caped substituted oligothiophenes display better characteristics than the unsubstituted ones. It could be anticipated that the phenyl-caped substitution would be helpful to charge-carrier hopings between chains, and thereby, enhance the conductivity.  相似文献   

9.
低聚芴及其衍生物吸收和发射光谱性质的量子化学研究   总被引:5,自引:0,他引:5  
用DFT/B3LYP方法对低聚物(PF)2n和(PFDBO)n(n=1-4)体系进行了全优化,计算得到两个系列低聚物的电离能PI(v,a)、电子亲和势EA(v,a)、空穴抽取能EHP和电子抽取能EEP等相关能量,并用ZINDO和TD-DFT方法计算其吸收光谱,分析了两系列总能量和HOMO-LUMO能隙随n递增的变化规律及对低聚物稳定性和光谱性质的影响,推断高聚物的发光性质.用CIS方法优化低聚物的S1激发态结构并分析其与发射光谱的关系.计算结果表明,这两个系列低聚物激发态结构中都有使所有骨架原子共平面的趋势.由于插入CH2OCH2,使PFDBO的七元环部分发生较大的扭曲(两个苯环间成42.5°±0.5°的二面角),致使有效共轭链被破坏、能带带隙变宽、吸收发射光谱波长变短.  相似文献   

10.
[structure: see text] Alternate thiophene/furan oligomers having four and six heterocycles, i.e., oligo(thienylfuran) dimer and trimer 2 (n = 4 and 6), were newly synthesized by repetitive Stille coupling reactions. The structural, electronic, and optical properties of these oligomers were investigated by X-ray crystallography (for n = 4), cyclic voltammetry (CV), UV-vis and fluorescence spectroscopy, and DFT calculations, and the results were compared with those of corresponding oligothiophenes (1) and oligofurans (3). The inter-ring torsional energy profiles calculated for bithiophene 1 (n = 2), thienylfuran 2 (n = 2), and bifuran 3 (n = 2) at the B3LYP/6-31G(d) level indicated that the most stable conformers of 2 (n = 2) and 3 (n = 2) are fully coplanar with transoid structure while that of 1 (n = 2) is twisted with a dihedral angle of 158 degrees . In accord with this, X-ray crystallographic analysis of 2 (n = 4) revealed that the pi-conjugated system is nearly planar with the inter-ring C=C-C=C dihedral angles between the thiophene and furan rings of 173.6(7) degrees , -177.0(7) degrees , and 172.6(6) degrees . In the packing structure, these nearly planar molecules are arranged in a herringbone pattern. The CV on a series of oligo(thienylfuran)s 2 showed irreversible oxidation peaks at +0.90, +0.42, and +0.29 V vs Fc/Fc(+) for n = 2, 4, and 6, which were 0.15-0.18 V lower than those for corresponding oligothiophenes 1 and were closer to those for oligofurans 3. On the other hand, the UV-vis spectra of 2 showed the longest wavelength absorption to be almost identical with those of the corresponding 1, and more bathochromically shifted than those of the corresponding 3. The results of CV and UV-vis measurements were supported by DFT calculations (B3LYP/ 6-311+G(2d,p)//B3LYP/6-31G(d)). Thus, oligo(thienylfuran)s 2 have HOMOs which are higher than those of oligothiophenes 1 and close to those of 3, and HOMO-LUMO gaps which are close to those of 1 and smaller than those of 3. In fluorescence spectra, the quantum yield of 2 increased with elongation of the pi-system (n = 2 (3.5%), 4 (19%), 6 (24%)).  相似文献   

11.
Two new conjugating helical polymers comprising a rodlike silicon backbone and enantiopure chiral pendants, poly[(R)-3,7-dimethyloctyl-(S)-3-methylpentylsilylene] (PS-1) and its diastereomeric poly[(S)-3,7-dimethyloctyl-(S)-3-methylpentylsilylene] (PS-2), were prepared. Molecular mechanics calculations of PS-1 and PS-2 model oligomers indicated a double well potential energy curve corresponding to almost enantiomeric helices with dihedral angles of 150-160 degrees (P-motif, global minimum) and 200-210 degrees (M-motif), regardless of their tacticity. Experimentally, it was found that PS-1 in dilute isooctane revealed switchable ambidextrous helicity on application of a thermal energy bias. Although PS-1 featured three distinct switching regions, viz. "region 1, between -80 and -10 degrees C", "region 2, between -10 and +10 degrees C", and "region 3, between +10 degrees C and +80 degrees C", the switching properties were interpreted as the result of superposed P- and M-helicities, undergoing dynamic pseudo-racemization or oscillation. Oscillating helicity in region 2 was roughly estimated to be about 13 cm(-)(1). The superposed helicity in region 2 was critical since it afforded molecular recognition ability with a dynamic memory function that was highly susceptible to solvent molecular topology and volume fraction. This could lead to potential as a molecular information processor to serve as a gauge of chemical properties. On the other hand, PS-2 could not switch its preferential screw-sense in the range of -80 to +80 degrees C. This may be related to greater differences the potential energy curve between P- and M-motifs.  相似文献   

12.
Novel oligothiophenes surrounded by bicyclo[2.2.2]octene (abbreviated as BCO) frameworks ranging from dimer to hexamer, 1(nT) (n = 2, 3, 4, 6), were prepared, and their structures and electronic properties were investigated. Dimer 1(2T) was synthesized by oxidative coupling of the 2-lithiated monomer generated from 4,5-BCO-annelated 2-bromothiophene 8 with CuCl2 in 76% yield. Trimer 1(3T) and tetramer 1(4T) were synthesized by Stille coupling of 2,5-dibromo-3,4-BCO-annelated thiophene 4 and of the 5,5'-dibromo derivative of bis(3,4-BCO-thiophen-2-yl) 10 with 2-stannylated 4,5-BCO-annelated thiophene 9 in 41% and 46% yield, respectively. Hexamer 1(6T) was synthesized by oxidative coupling of terthiophene 12, tris-annelated with BCO units, in 81% yield. X-ray crystallographic studies showed that the thiophene rings in 1(2T) and 1(3T) are rotated around the inter-ring C-C bond(s) with the C=C-C=C dihedral angles of -174.3(5) degrees for 1(2T) and -149.7(3) degrees and 34.4(3) degrees for 1(3T). In the crystal structures of 1(2T) and 1(3T), no pi-stacking was observed as expected from the steric effect of the BCO units. Theoretical calculations for 1(2T) and 1(3T) at the B3LYP/6-31G(d) level indicated that the annelation with BCO units either at the 2,3- or 3,4-positions of thiophene rings raises both the KS HOMO and LUMO levels. In the electronic absorption spectra of 1, the longest wavelength absorption band corresponding to the pi-pi transition is bathochromically shifted with the increase in absorption intensity as the number of thiophene rings increases, and the absorption of the polythiophene 1 with infinite length was predicted to be 419 nm. The cyclic voltammetry of 1 in CH2Cl2 at -78 degrees C (2T) or at room temperature (3T, 4T, 6T) showed two reversible oxidation waves, indicating that the radical cation and dication of 1 are stable under these conditions.  相似文献   

13.
Polynaphthalene (Pnap) was electrosynthesized through the direct oxidation of naphthalene in boron trifluoride diethyl etherate and was characterized with IR and Raman spectroscopy, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectroscopy, and thermogravimetric analysis. Raman spectra of oligonaphthalene were calculated with Gaussian 98 at the B3LYP/6‐31G* level. Combining the computational and experimental results, we assigned the Raman bands of pristine Pnap. The Raman bands related to the chain‐stretching vibrations of Pnap around 1600 cm?1 shifted to higher wave numbers as the polymerization degree increased. This phenomenon was in contrast to that of other conducting polymers bearing simple aromatic rings, such as polythiophene and polyfuran. The reason was that the condensed ring of Pnap and the steric repulsion of the interring hydrogen atoms prevented the elongation of conjugation sequences with the polymer chain length. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 241–251, 2005  相似文献   

14.
采用DFT/B3LYP方法对低聚物(p- P)2n、(m- P)2n、(m- P1)n和(m- P2)n(n=1~4)体系进行了全优化, 并用ZINDO, TD- DFT方法计算其吸收光谱性质. 分析了各系列HOMO- LUMO能隙、最大吸收波长随n递增的变化规律. 根据低聚物的上述结果外推得到聚合物的性质, 并由此计算了聚合物的有效共轭长度(ECL). 由于间位连接方式的影响, 削弱了间位聚苯及其衍生物的有效共轭程度, 与对位聚苯比较, 能带带隙变宽, 吸收光谱蓝移约130 nm.  相似文献   

15.
The excited-state dynamics of a donor-acceptor phenol-pyridinium biaryl cation was investigated in various solvents by femtosecond transient absorption spectroscopy and temperature dependent steady-state emission measurements. After excitation to a near-planar Franck-Condon delocalized excited S(1)(DE) state with mesomeric character, three fast relaxation processes are well resolved: solvation, intramolecular rearrangement leading to a twisted charge-shift (CSh) S(1) state with localized character, and excited-state proton transfer (ESPT) to the solvent leading to the phenoxide-pyridinium zwitterion. The proton transfer kinetics depends on the proton accepting character of the solvent whereas the interring torsional kinetics depends on the solvent polarity and viscosity. In nitriles, ESPT does not occur and interring twisting arises with no significant intrinsic barrier, but still slower than solvation. The CSh state is notably fluorescent. In alcohols and water, ESPT is faster than the solvation and DE → CSh relaxation processes and yields the zwitterion hot ground state, which strongly quenches the fluorescence. In THF, solvation and interring twisting occur first, leading to the fully relaxed, weakly fluorescent CSh state, followed by slow ESPT towards the zwitterion. At low temperature (77 K), the large viscous barrier of the solvent inhibits the torsional relaxation but ESPT still arises to some extent. Strong emission from the DE geometry and planar zwitterion is thus observed. Finally, quantum chemical calculations were performed on the ground and excited state of model phenol-pyridinium and phenoxide-pyridinium compounds. Strong S(1) state energy stabilization is predicted upon twisting in both cases, consistent with a fast relaxation towards the perpendicular geometry. A substantial S(0)-S(1) energy gap is still present for the twisted cationic species, which can explain the long-lived emission of the CSh state in nitriles. A quite different situation arises with the zwitterion for which the S(0)-S(1) energy gap predicted at the twisted geometry is very small. This suggests a close-lying conical intersection and can account for the strong fluorescence quenching observed in solvents where the zwitterion is produced by ESPT.  相似文献   

16.
Zade SS  Bendikov M 《Organic letters》2006,8(23):5243-5246
[Structure: see text] Extrapolation of HOMO-LUMO gaps for pi-conjugated oligomers at the B3LYP/6-31G(d) level of theory predict accurately (within 0.1-0.2 eV) the band gaps of conjugated polymers only when long (at least 20-mer) pi-conjugated oligomers are used for the extrapolation.  相似文献   

17.
《Comptes Rendus Chimie》2016,19(5):646-653
The molecular geometries and electronic properties of a series of bis(aminoalkyl) end-capped oligothiophenes (BRnTs) were investigated by means of the density functional theory (DFT). The calculations were performed on dimers up to octamers in the neutral and ionic species using the B3LYP/6-31G(d,p) level of theory. The results obtained show that the conjugated systems in the p- and n-doped oligomers had more aromaticity, with expanded and planar chains. The calculated energy gap values between the frontier molecular orbitals for the end-capped oligomers were larger than those for the unsubstituted oligomers, in which with increase in the oligomer chain length, the conduction band gap decreased. The calculated first excitation energies of BRnTs at the TD-B3LYP/6-31G(d,p) level indicated that both doped oligomers (p- and n-type) had lower excitation energies than the neutral states, and that they displayed red shifts in their absorption spectra. Moreover, the results obtained for the natural bond orbital (NBO) analysis showed that closing the end-side oligothiophene chains with the aminoalkyl groups eased the hole or electron transfer, owning to better charge delocalization through the backbone structures of BRnTs.  相似文献   

18.
The infrared and Raman spectra of vapor, liquid, and solid state cyclopentane and its d(1), 1,1-d(2), 1,1,2,2,3,3-d(6), and d(10) isotopomers have been recorded and analyzed. The experimental work was complemented by ab initio and density functional theory (DFT) calculations. The computations confirm that the two conformational forms of cyclopentane are the twist (C(2)) and bent (C(s)) structures and that they differ very little in energy, less than about 10 cm(-1) (0.1 kJ/mol). The bending angle for the C(s) form is 41.5° and the dihedral angle of twisting is 43.2° for the C(2) form. A reliable and complete vibrational assignment for each of the isotopomers has been achieved for the first time, and these agree very well with the DFT (B3LYP/cc-pVTZ) computations. The ab initio CCSD/cc-pVTZ calculations predict a barrier to planarity of 1887 cm(-1), which is in excellent agreement with the experimental value of 1808 cm(-1).  相似文献   

19.
C(2)H(3)(35)Cl+ in the ground vibronic state was generated by one-photon mass-analyzed threshold ionization spectrometry, and its photodissociation in the 461-406 nm range was investigated. Ionization energy to the ground state of C(2)H(3)(35)Cl+ was 10.0062 +/- 0.0006 eV while its B state onset was higher by 2.7456 +/- 0.0003 eV. A vibrational spectrum of the cation in the B state obtained by recording the product ion yield as a function of wavelength was analyzed by referring to the quantum chemical results at the TDDFT/B3LYP/6-311++(df,pd) level. Analysis of product time-of-flight profiles recorded with different laser polarization angles showed that the dissociation pathway for the cation in the B state changed with the vibrational energy, from internal conversion to X and statistical dissociation therein to curve crossing to C and repulsive dissociation therein. B --> C curve crossing seemed to occur along a direction close to the C-Cl bond stretch.  相似文献   

20.
本文将3,4-次乙烯二氧噻吩(VDOT)与噻吩并[3,4-b]吡嗪(TP),呋喃并[3,4-b]吡嗪(FP)和6H-吡咯并[3,4-b]吡嗪(PP)组合,获得了一系列3,4-次乙烯二氧噻吩衍生物.采用密度泛函理论(DFT)在B3LYP/6-31G*理论水平下对其单体、低聚物和聚合物的结构和电子性质进行了深入的理论研究.通过分析键长的变化、中心键性质,Wiberg键级(WBI)以及核独立化学位移,发现随着聚合度的增加物质的共轭性也随之增加.为了了解不同的VDOT与TP、FP、PP比例对电子性质的影响,对V-P比例为1:1、1:2和2:1时的计算结果进行了对比分析,结果表明,V-P比例为1:2化合物共轭性最好,而2:1的共轭性最差.由于1:2的二聚物具有较大的电子迁移速率,其相应的聚合物可能是潜在的电子传输材料.同时,聚合物的能带结构显示V-P比例为1:1的聚合物(包括(VDOT-TP)n,(VDOT-FP)n和(VDOT-TP)n)具有相对低的带隙和很宽的带宽,可以做为潜在的导电材料.另外,(VDOT-BTP)n和(VDOT-BFP)n有着非常低的带隙(分别为0.73和0.87eV),且拥有合适的带宽,也是良好的本征导电材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号