首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The structure, synthesis and magnetic properties of three new complex cobalt hydroxyl oxalates are presented, showing a modification of the 2-D double layer hydroxide structure. Co(12)(OH)(18)(ox)(3)(pip) [ox = oxalate, C(2)O(4)(2-); pip = piperazine, C(4)N(2)H(10)] (1), is essentially built from brucite-like layers with a one ninth depletion of the octahedral sites and a preservation of a trigonal crystallographic symmetry. ACo(28)(OH)(43)(ox)(6)Br(2)(H(2)O)(2) [A = Na (2), K (3)] are similarly composed of a brucite-like layer with three nineteenths depletion of octahedral sites, again preserving a trigonal symmetry. Both 2 and 3 show a small degree of structural disorder within the framework. All of these compounds have alternating layers of a mineral-like metal hydroxide structure and a metal oxalate coordination network, with the depletion in the hydroxyl layers being templated by the coordination network. Magnetic studies of 1 reveal a metamagnetic character, with the onset of an antiferromagnetic phase below T(c) = 23.5 K (H = 0 G), and a first order antiferromagnet to metamagnet transition at H(c) = 500-1000 G (T = 20-6 K). Compound 3 shows a more conventional ferrimagnetic ordering below 33(±1) K with a small coercive field of 107(±5) G at 10 K.  相似文献   

2.
Two open-framework neodymium oxalates, [NH(3)CH(2)CH(NH(3))CH(3)][Nd(C(2)O(4))(2)(HCOO)].H(2)O (I) and [OC(CH(3))NCH(2)CH(CH(3))NH(3)][Nd(C(2)O(4))(2)].H(2)O (II), have been synthesized hydrothermally in the presence of 1,2-diaminopropane (1,2-DAP) and formic (I) and acetic (II) acids. The Nd atoms in both these oxalates have 9-fold coordination with respect to the oxygens, with the Nd atom in a distorted monocapped square antiprism coordination in I and in an idealized D(3)(h) triply capped trigonal prism coordination in II. The three-dimensional framework structures of I and II are built up by in-plane linkages between the Nd and the oxalate moieties, forming layers with 12-membered honeycomb-like apertures, pillared by an out-of-plane oxalate unit. The 12-memberd channel in I contains a dangling formate group in addition to the disordered amine molecule, while in II, the channel has N-(2-aminopropyl acetimide) molecules formed by the in situ reaction of 1,2-DAP and acetic acid. The accessibility of the formate and N-(2-aminopropyl acetimide) functional groups in I and II, respectively, uniformly distributed within the channels enables chemical manipulation. Crystal data: I, monoclinic, space group P2(1)/c (no. 14), M = 459.5, a = 9.0279(4) A, b = 18.1362(8) A, c = 8.5631(4) A, beta = 102.735(10) degrees, V = 1367.56(11) A(3), Z = 4, R(1) = 0.0229, wR(2) = 0.0599 [1782 observed reflections with I > 2sigma(I)]; II, triclinic, space group P(-)1 (no. 2), M = 454.5, a = 8.6222(9) A, b = 9.5683(10) A, c = 9.5712(10) A, alpha = 109.388(2) degrees, beta = 98.508(10) degrees, gamma = 102.361(12) degrees, V = 706.73(13) A(3), Z = 2, R(1) = 0.0446, wR(2) = 0.115 [1730 observed reflections with I > 2sigma(I)].  相似文献   

3.
Reaction of aqueous AgNO(3) with aqueous M(3)[Cr(ox)(3)] in >or=3:1 molar ratio causes the rapid growth of large, cherry-black, light-stable crystals which are not Ag(3)[Cr(ox)(3)], but [M(0.5)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)] (ox(2)(-) = oxalate, C(2)O(4)(2)(-); M = Na, K, Cs, Ag, or mixtures of Ag and a group 1 element). The structure of these crystals contains an invariant channeled framework, with composition [[Ag(2.5)Cr(ox)(3)](-)(0.5)]( infinity ), constructed with [Cr(ox)(3)] coordination units linked by Ag atoms through centrosymmetric [Cr-O(2)C(2)O(2)-Ag](2) double bridges. The framework composition [Ag(2.5)Cr(ox)(3)](-)(0.5) occurs because one Ag is located on a 2-fold axis. Within the channels there is a well-defined and ordered set of six water molecules, strongly hydrogen bonded to each other and some of the oxalate O atoms. This invariant channel plus water structure accommodates group 1 cations, and/or Ag cations, in different locations and in variable proportions, but always coordinated by channel water and some oxalate O atoms. The general formulation of these crystals is therefore [M(x)Ag(0.5-x)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)]. Five different crystals with this structure are reported, with compositions 1 Ag(0.5)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 2 Cs(0.19)Ag(0.31)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 3 K(0.28)Ag(0.22)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 4 Cs(0.41)Ag(0.09)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), and 5 Cs(0.43)Ag(0.07) [Ag(2.5)Cr(ox)(3)](H(2)O)(3). All crystallize in space group C2/c, with a approximately 18.4, b approximately 14.6, c approximately 12.3 A, beta approximately 113 degrees. Pure Ag(3)[Cr(ox)(3)](H(2)O)(3), which has the same crystal structure (1), was obtained from water by treating Li(3)[Cr(ox)(3)] with excess AgNO(3). Complete dehydration of all of these compounds occurs between 30 and 100 degrees C, with loss of diffraction, but rehydration by exposure to H(2)O(g) at ambient temperature leads to recovery of the original diffraction pattern. In single crystals, this reversible dehydration-hydration occurs without visually evident crystal change, but with loss of mechanical strength. We postulate a general mechanism for transport of water molecules along the channels, associated with local partial collapses of the channel framework, with concomitant bending but little breaking of the host Ag-O and Cr-O bonds, which is readily reversed.  相似文献   

4.
Detailed structural, magnetic, and luminescence studies of six different crystalline phases obtained in the lanthanide/pyrimidine-4,6-dicarboxylate/oxalate system have been afforded: {[Ln(μ-pmdc)(μ-ox)(0.5)(H(2)O)(2)]·3H(2)O}(n) (1-Ln), {[Ln(μ-pmdc)(μ-ox)(0.5)(H(2)O)(3)]·2H(2)O}(n) (2-Ln), {[Ln(μ(3)-pmdc)(μ-ox)(0.5)(H(2)O)(2)]·~2.33H(2)O}(n) (3-Ln), {[Ln(2)(μ(3)-pmdc)(μ(4)-pmdc)(μ-ox)(H(2)O)(3)]·5H(2)O}(n) (4-Ln), {[Ln(μ(3)-pmdc)(μ-ox)(0.5)(H(2)O)(2)]·H(2)O}(n) (5-Ln), and [Ln(pmdc)(1.5)(H(2)O)(2.5)] (6-Ln). The slow generation of the oxalate (ox) anion, obtained from the in situ partial hydrothermal decomposition of the pyrimidine-4,6-dicarboxylate (pmdc) ligand, allows us to obtain good shaped single crystals, while direct addition of potassium oxalate provides the same compounds but as polycrystalline samples. The crystal structures of all compounds are based on the double chelation established by the pmdc and ox ligands to provide distorted 2D honeycomb layers that, in some cases, are fused together, leading to 3D systems, by replacing some of the coordinated water molecules that complete the coordination sphere of the lanthanide by uncoordinated carboxylate oxygen atoms of the pmdc. The presence of channels occupied by crystallization water molecules is also a common feature with the exception of compounds 5-Ln. It is worth noting that compounds 3-Ln present a commensurate crystal structure related to the partial occupancy of the crystallization water molecules placed within the channels. Topological analyses have been carried out, showing a previously nonregistered topology for compounds 4-Ln, named as jcr1. The crystal structures are strongly dependent on the lanthanide ion size and the temperature employed during the hydrothermal synthesis. The lanthanide contraction favors crystal structures involving sterically less hindranced coordination environments for the final members of the lanthanide series. Additionally, reinforcement of the entropic effects at high temperatures directs the crystallization process toward less hydrated crystal structures. The magnetic data of these compounds indicate that the exchange coupling between the lanthanide atoms is almost negligible, so the magnetic behavior is dominated by the spin-orbit coupling and the ligand field perturbation. The luminescence properties that exhibit the compounds containing Nd(III), Eu(III), and Tb(III) have been also characterized.  相似文献   

5.
The reaction of copper(II) nitrate, oxamide, and an angular bridging ligand 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (4-bpo) under hydrothermal conditions affords a 3D pillared-layer coordination framework {[Cu(2)(4-bpo)(ox)(2)](H(2)O)(4)}(n) (1) (ox = oxalate), featuring the unique zeolite-type NiP(2) network and interesting properties.  相似文献   

6.
Gao HL  Yi L  Zhao B  Zhao XQ  Cheng P  Liao DZ  Yan SP 《Inorganic chemistry》2006,45(15):5980-5988
The self-assembly of 4-hydroxypyridine-2,6-dicarboxylic acid (H(3)CAM) and pyridine-2,6-dicarboxylic acid (H2PDA) with Zn(II) salts under hydrothermal conditions gave two novel coordination polymers {[Zn(HCAM)].H2O}n (1) and {[Zn(PDA)(H2O)(1.5)]}n (1a). 1 and 1a comprise of a 2D (4,4) net and a 1D zigzag chain, respectively, in which a new coordination mode of PDA is found. The reactions of H(3)CAM and H2PDA with Nd2O3 in the M/L ratio 2:3 gave {[Nd2(HCAM)3(H2O)4].2H2O}n (2) and {[Nd(2)(PDA)3(H2O)(3)].0.5H2O}n (2a). In 2, a square motif as a building block constructed by four Nd(III) ions was further assembled into a highly ordered 2D (4,4) grid. 2a is a 3D microporous coordination polymer. It is interesting to note that, when Ln(III) salts rather than oxides were employed, the reaction produced {[Ln(CAM)(H2O)3].H2O}n (Ln = Gd, 3; Dy, 4; Er, 5) for H(3)CAM and {[Gd2(PDA)3(H2O)3].H2O}n (3a) for H2PDA. 3-5 are 2D coordination polymers with a 3(3)4(2) uniform net, where hydroxyl groups of H3CAM coordinate with metal ions. The reaction of H3CAM and Er2O3 instead of Er(ClO4)3 produced {[Er2(HCAM)3(H2O)4].2H2O}n (6). The compounds 2a and 3a, 2 and 6 are isomorphous. The stereochemical and supramolecular effects of hydroxyl groups result in the dramatic structural changes from 1D (1a) to 2D (1) and from 2D (2) to 3D (2a). When Ln(III) salts instead of Ln2O3 were employed in the hydrothermal reactions with H(3)CAM, different self-assembly processes gave the products of different metal/ligand ratio with reactants (3-5).  相似文献   

7.
[Ln(8)(SeO(3))(4)(2,6-pdc)(8)(H(2)O)(10)].2H(2)O (Ln = La (1), Nd (2), Eu (3); 2,6-pdcH(2) = pyridine-2,6-dicarboxylic acid) represent the first examples of luminescent lanthanide selenite-carboxylate compounds. The compounds have been hydrothermally synthesized and structurally characterized. The structures feature two-dimensional (2D) host frameworks composed of Ln(8)(SeO(3))(4)(2,6-pdc)(8)(H(2)O)(10) clusters connected to each other via inter-cluster Ln(2)O(2) rhombic units along the b-axis and 12-membered Ln(4)O(2)(COO)(2) rings along the c-axis. Inter-layer H-bonding interactions between coordinated water molecules and carboxylate groups lead to three-dimensional architectures. Thermogravimetric analysis (TGA) indicated that the 2D networks were thermostable up to approximately 450 degrees C after losing both coordinated and lattice water molecules and underwent reversible process of dehydration and rehydration. Study on photoluminescent properties revealed that compounds 1, 2 and 3 were new rare-earth materials with violet, near-infrared, and red luminescence, respectively.  相似文献   

8.
Two nickel(II) complexes of formula (H(3)dien)(2)[Ni(2)(ox)(5)].12H(2)O (1) and [Ni(2)(dien)(2)(H(2)O)(2)(ox)]Cl(2) (2) (dien = diethylenetriamine and ox = oxalate dianion) have been synthesized and characterized by single-crystal X-ray diffraction. 1 crystallizes in the orthorhombic system, space group Abnn, with a = 15.386(4) ?, b = 15.710(4) ?, c = 17.071(4) ?, and Z = 4. 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 10.579(1) ?, b = 7.258(1) ?, c = 13.326(1) ?, beta = 93.52(3) degrees, and Z = 2. The structures of 1 and 2 consist of dinuclear oxalato-bridged nickel(II) units which contain bidentate oxalate (1) and tridentate dien in the fac-conformation (2) as terminal ligands. Both features, oxalato as a peripheral ligand and dien in the fac-conformation (instead of its usual mer-conformation), are unprecedented in the coordination chemistry of nickel(II). The nickel atom is six-coordinated in both compounds, the chromophores being NiO(6) (1) and NiN(3)O(3) (2). The Ni-O(ox) bond distances at the bridge (2.072(4) ? in 1 and 2.11(1) and 2.125(9) ? in 2) are somewhat longer than those concerning the terminal oxalate (2.037(5) and 2.035(3) ? in 1). Magnetic susceptibility data of 1 and 2 in the temperature range 4.2-300 K show the occurrence of intramolecular antiferromagnetic coupling with J = -22.8 (1) and -28.8 (2) cm(-)(1) (J being the parameter of the exchange Hamiltonian H = -JS(A).S(B)). The observed value of -J in the investigated oxalato-bridged nickel(II) complexes, which can vary from 22 to 39 cm(-)(1), is strongly dependent on the nature of the donor atoms from the peripheral ligands. This influence has been analyzed and rationalized through extended Hückel calculations.  相似文献   

9.
The title coordination polymer, [Pb(L)(1,4-ndc)] 1 (L = 2-(4-fluorophenyl)-1Himidazo[4,5f1,10]phenanthroline, 1,4-ndc = naphthalene-1,4-dicarboxylic acid), has been obtained by using hydrothermal synthesis and characterized by elemental analysis, IR and singlecrystal X-ray diffraction. It crystallizes in monoclinic, space group P21/c with a = 10.1043(11), b = 14.3162(15), c = 17.6061(18), β = 95.3990(10)°, V = 2535.5(5)3, Z = 4, C31H17FN4O4Pb, Mr = 735.68, Dc = 1.927 g/cm3, F(000) = 1416, μ(MoKa) = 6.709 mm-1, R = 0.0201 and wR = 0.0489. The 1,4-ndc dianions link neighboring Pb(II) atoms in a bis-chelating mode, yielding a one-dimensional chain structure along the c axis. The C–H···π interactions between the carbon atom of L ligand and the benzene ring of 1,4-ndc lead the one-dimensional chains to form a two-dimensional supramolecular layer. The π-π interactions between L ligand and 1,4-ndc ligand make the two-dimensional layers generate a three-dimensional supramolecular architecture. Additionally, the N–H···O hydrogen bonds further stabilize the structure of 1.  相似文献   

10.
One novel 3D 3d-4f coordination polymer, [LaZn(glc)(ox)2(H2O)2]n (1, glc = glycinate, ox = oxalate), was obtained by the in situ synthesis of glycinate from the reaction of tetrazole-1-acetic acid, sodium oxalate, zinc nitrate and lanthanide oxide in the presence of a trace quantity of nitric acid under hydrothermal conditions. Compound 1 is of monoclinic, space group P21/n with a = 0.99601(9), b = 1.14592(10), c = 1.19107(10) nm and β = 108.7150(10)°. 1 exhibits an unusual 3D heterometallic coordination framework constructed by heterometallic dinuclear LaZn subunits and mixed ox and glc linkers with a uninodal 6-connected vme {33 .43 .58 .6} net.  相似文献   

11.
A series of lanthanide and lanthanide-transition metal compounds with isonicotinic acid (Hina) and oxalate ligands have been synthesized under hydrothermal reactions. X-Ray crystal structure analyses reveal that they have a rich structural chemistry. Three distinct structure types were exhibited with decreasing lanthanide radii: [LnCu(ina)(2)(C(2)O(4))].H(2)O (Ln=La 1, Pr 2, Nd 3) for type I, [Ln(ina)(C(2)O(4))(H(2)O)(2)] (Ln=Sm 4, Eu 5, Gd 6) for type II, and [Ln(ina)(C(2)O(4))(0.5)(OH)] (Ln=Tb 7, Dy 8, Er 9) for type III. The structure of type I has a 3d-4f heterometallic structure and consists of 1D channels along the b axis, which filled with guest water molecules. They exhibit a first 3D uninodal eight-connected framework with a unique 3(6).4(18).5(3).6 topology. Type II has 2D Ln-ina-C(2)O(4) 4(4)-nets, the nitrogen donors of the ina ligand are not coordinated to any of the metal ions, inducing the lower dimensional networks. Type III consists of 2D Ln-C(2)O(4) layers pillared by ina ligands to form a pillared-layer framework. The structure evolution is due to the versatile coordination modes of ina and oxalate ligands as well as the lanthanide contraction effect. Notably, the oxalate ligand was in situ synthesized from orotic acid through an oxidation-hydrolysis reaction. The type III materials show high thermal stability; luminescence properties of Nd 3, Sm 4, Eu 5, Tb 7 are also investigated.  相似文献   

12.
Eight 2D and 3D metal-organic framework (MOF) rare earth naphthalenedisulfonates have been obtained. The different geometry of the naphthalenedisulfonic acids used as connectors [(1,5-NDS) and (2,6-NDS)] gives rise to the three new structure types. In Ln(OH)(1,5-NDS)H2O, LnPF-1 (lanthanide polymeric framework; Ln=La, Nd, Pr, Sm and Eu), the lanthanide ion is octacoordinated. Its 3D structure is formed by (Ln2O14)-S-(Ln2O14) infinite chains, connected through complete NDS connectors. LnPF-2 (Ln=Nd), with the same empirical formula as the former, and the lanthanide in octa- and nonacoordination, owns an arrangement of sulfonate bridges and neodymium polyhedra that gives rise to a 2D structure. [Ln5(2,6-NDS)3(OH)9(H2O)4](H2O)2, LnPF-3 (Ln=Nd, Eu), demonstrates that it is possible to obtain a 3D structure with (2,6-NDS), when a greater Ln/connector ratio is employed. It is worth pointing out the existence, in this latter family of compounds, of a mu5-OH group, whose hydrogen atom is very close to one-sixth Ln atom (distance Ln...H=2.09 A). The materials, with high thermal stability, act as active and selective bifunctional heterogeneous catalysts in oxidation of linalool yielding cyclic hydroxy ethers. The absence of any 3D Nd-Nd magnetic interaction is explained due to the inner nature of 4f orbitals of Nd3+, which do not favor the magnetic exchange. The influence of the polymeric frame matrix results in a better photoluminescence efficiency for NdPF-1.  相似文献   

13.
Polymeric networks, {[Co(dpyo)(ox)]}(n) (1), {[Co(dpyo)(fum)(H(2)O)(2)]}(n) (1) and {[Co(dpyo)(tp)(H(2)O)(2)] x [Co(H(2)O)(6)] x (tp) x (H(2)O)}(n) (3) [ox = oxalate dianion, fum = fumarate dianion, tp = terephthalate dianion and dpyo = 4,4'-dipyridyl N,N'-dioxide] have been synthesized and characterized by single crystal X-ray diffraction analyses. The structural determination reveals 1 and 2 are covalent bonded 2D networks of 4,4 topology and of these, complex 2 undergoes a H-bonding scheme resulting in a 3D supramolecular architecture. Complex 3 is a 1D coordination polymer built up by almost collinear hexacoordinated Co(ii), doubly bridged by a tp carboxylate group and a dpyo oxygen, which in combination with lattice [Co(H(2)O)(6)](2+), tp and water molecules shows an unprecedented 3D supramolecular network through H-bonding. In the polymer the dpyo shows novel mu-4,4 bridging mode towards the cobalt ion. Low temperature magnetic interaction reveals antiferromagnetic coupling in all of the complexes.  相似文献   

14.
A new 1D chain coordination polymer [Cd(dpq)(ox)0.5Cl]n(1) (dpq=dipyrido[3,2-d:2′,3′-f]quinoxaline and ox=oxalate) has been hydrothermally synthesized and structurally characterized by elemental analysis, IR and single crystal X-ray diffraction analysis. Compound 1 (CdClC15H8N4O2): monoclinic, space group P21/c, a=0.854 04(5) nm, b=2.094 90(13) nm, c=0.839 22(5) nm, Z=4, V=1.438(15) nm3, Mr=424.11, Dc=1.959 g·cm-3, F(000)=828.0, μ=1.719 mm-1, S=1.028, the final R=0.025 8 and wR=0.057 5. The crystal structure analysis indicates that the cadmium ion is coordinated by two oxygen atoms from a oxalate, two chelating nitrogen atoms from a dpq molecule and two Cl- anions. The adjacent Cd(Ⅱ) ions are linked by Cl- anions and oxalate ligands in alternate sequence to form a 1D chain coordination polymer and the adjacent chains are further connected by π-π stacking interactions to form a 2D supramolecular network. Moreover, the title compound exhibits blue emission in the solid state at room temperature. CCDC: 680748.  相似文献   

15.
于方永  郝志峰  李海峰  胡升 《结构化学》2012,31(9):1315-1321
Routine solution reaction of Gd3+ and p-phenylenediamine-N,N,N′,N′-tetraacetic acid (p-PhDTA) yields a dinuclear complex [Gd2(ox)(p-PhDTA)2(H2O)10]·6H2O (ox = oxalate), which was characterized by single-crystal X-ray diffraction (MoKα radiation, = 0.71073), elemental analysis and IR. This complex crystallizes in the monoclinic system, space group P21/n with a = 10.2522(8), b = 10.0053(8), c = 23.8834(18), = 99.1080(10)°, V = 2419.0(3)3, Z = 2, Mr = 1367.32, Dc = 1.877 g/cm3, F(000) = 1368, = 2.830 mm-1, the final R = 0.0337 and wR = 0.0794 for 4747 observed reflections (I > 2 (I)). The exo-tetradentate oxalate ligand, generated in situ from the oxidative coupling of methanol, is incorporated to construct a dinuclear Gd2(ox)2 unit decorated with p-PhDTA ligands on the two sides with a monodentate coordination mode. The dinuclear molecules are further connected by the lattice water molecules to form a three-dimen- sional hydrogen network.  相似文献   

16.
Conventional reactions of the new multidentate ligand 7-amine-1,2,4-triazolo[1,5-a]pyrimidine (7atp, 1) with copper(II) salts lead to four novel multidimensional coordination complexes [Cu(7atp)(mal)(H(2)O)(2)]·H(2)O (2), [Cu(2)(μ-7atp)(4)(H(2)O)(2)](ClO(4))(4)·3H(2)O (3), {[Cu(7atp)(2)(μ-ox)]·3H(2)O}(n) (4) and {[Cu(7atp)(2)(μ-suc)]·2H(2)O}(n) (5), where ox(2-), mal(2-) and suc(2-) mean oxalate, malonate and succinate, respectively. In these compounds, the 7atp ligand coordinates monodentately through its atom N3, except for compound 3, which displays N3-N4 coordination mode, giving rise to all to structures with diverse topologies and dimensionality. Compound 2 is a mononuclear entity, 3 consists of dinuclear species, 4 is a zig-zag chain with oxalate as a bridging ligand and 5 is a succinate-bridged mono-dimensional system. All polynuclear metal complexes show antiferromagnetic interactions of with J values ranging from -0.12 to -49.5 cm(-1). The ligand donor capabilities have been estimated by topological analyses of the electron density (QTAIM) and electron localization function (ELF), obtained by DFT calculations. The compounds are the first structurally characterized copper(II) complexes containing the 7atp ligand.  相似文献   

17.
草酸铽与水合环己烷六酸(H6LⅠ.H2O)(顺式椅式构型LⅠ:a,e,a,e,a,e)在水热条件下反应生成一种新颖的三维稀土配位聚合物[Tb4(LⅡ)(ox)3(H2O)8](LⅡ为反式椅式构型:e,e,e,e,e,e;ox为草酸根),通过元素分析和红外光谱对这个配位聚合物进行了表征。X射线单晶衍射分析表明该配合物属于三斜晶系,P1空间群,晶胞参数为:a=0.60203(4)nm,b=1.08278(8)nm,c=1.29446(9)nm,α=67.908 0(10)°,β=82.109 0(10)°,γ=83.887 0(10)°,V=0.773 07(9)nm3,Z=2。在这个配合物的形成中,顺式构型的H6LⅠ配体发生构型转变形成LⅡ配体,LⅡ配体采取μ8-桥连模式将Tb离子连接成一个具有孔洞的二维(Tb-LⅡ)配位层。由μ2-和μ4-桥连模式构成的一维(Tb-ox)链将二维(Tb-LⅡ)层连接成一个具有孔道的三维配位框架,ox配体和水分子通过配位作用和氢键作用填充在孔道中。  相似文献   

18.
Six inorganic-organic bismuth 2,6-pyridinedicarboxylate (pdc) compounds, [Bi(2,6-pdc)(3)]·3(dma), 1, [Bi(2,6-pdc)(3)]·3(dma)·2(H(2)O), 2, [Bi(2,6-pdc)(2)(dmf)]·(dma), 3, Bi(2,6-pdc)(2,6-pdcme)(MeOH), 4, [LiBi(2,6-pdc)(3)(H(2)O)]·2(dma), 5, and Li(5)Bi(2,6-pdc)(4)(H(2)O)(2), 6 (where dma = dimethyl ammonium cation, dmf = dimethylformamide and 2,6-pdcme = 6-methyl-oxycarbonyl pyridine 2-carboxylate) have been synthesized under solvothermal conditions and their structures determined by single crystal X-ray diffraction. Compounds 1-4 have molecular structures whereas compounds 5 and 6 form one- and three-dimensional frameworks, respectively. Compounds 1 and 2, both having similar monomeric bismuth coordination units, which are connected non-covalently into a (4,4)-connected square lattice by H-bonding interactions through dma cations. Compounds 3 and 4, both have a similar dimeric bismuth coordination unit. In 3, the dimers are connected into a one-dimensional chain by H-bonding interactions through dma cations. In the partially esterified and neutral 4, there was no such H-bonding interactions due to the absence of any dma cations. Compounds 5 and 6 have a similar monomeric bismuth coordination unit to that seen in 1 and 2. In 5, the monomers are connected through lithium cations into one-dimensional chains, which further interact non-covalently by H-bonding interactions through dma cations. In the lithium-rich 6, the monomers are connected by the lithium cations and 2,6-pdc anions into a three dimensional structure with intramolecular H-bonding interactions involving the water molecules. The non-porous 5 and 6 exhibit a reasonable amount of H(2) and CO(2) sorptions, respectively. Tb(3+)- and Eu(3+)-doped and co-doped 4 and 5 emit characteristic sensitized green/red/yellow-orange luminescence.  相似文献   

19.
Three new polynuclear Ca(II)- and Na(I) phosphate complexes with two strategically oriented bulky amide groups, 2,6-(PhCONH)(2)C(6)H(3)OPO(3)H(2), were synthesized, including one with a zigzag-chain, [Ca(II)[O(3)POC(6)H(3)-2,6-(NHCOPh)(2)](H(2)O)(4)(EtOH)](n), a cyclic-octanuclear form, [Ca(II)(8)[O(3)POC(6)H(3)-2,6-(NHCOPh)(2)](8)(O=CHNMe(2))(8)(H(2)O)(12)], and a hexanuclear complex, (NHEt(3))[Na(3)[O(3)POC(6)H(3)-2,6-(NHCOPh)(2)](2)(H(2)O)(MeOH)(7)]. X-ray crystallography revealed that all have an unsymmetric ligand position due to the bulky amide groups. A dynamic transformation of the Ca(II) zigzag-chain structure to the cyclic-octanuclear complex was induced by changing coordination of DMF molecules, which caused a reorganization of the intermolecular/intramolecular hydrogen bond network.  相似文献   

20.
The reaction of K3[M(III)(ox)3].3H2O [M = V (1), Cr; ox = oxalate], Mn(II)/V(II), and [N(n-Bu)4]Br in water leads to the isolation of 2-D V-based coordination polymers, [[N(n-Bu)4][Mn(II)V(III)(ox)3]]n (2), [[N(n-Bu)4][V(II)Cr(III)(ox)3]]n (3), [[N(n-Bu)4][V(II)V(III)(ox)3]]n (4), and an intermediate in the formation of 4, [[N(n-Bu)4][V(II)V(III)(ox)3(H2O)2]]n.2.5H2O (4a), while 1-D [V(II)(ox)(H2O)2]n (5) is obtained by using Na2ox and [V(OH2)6]SO4 in water. The structures of 1-5 have been investigated by single crystal and/or powder X-ray crystallography. In 1, V(III) is coordinated with three oxalate dianions as an approximately D3 symmetric, trigonally distorted octahedron. 1 is paramagnetic [mu(eff) = 2.68 mu(B) at 300 K, D = 3.84 cm(-1) (D/k(B) = 5.53 K), theta = -1.11 K, and g = 1.895], indicating an S = 1 ground state. 2 exhibits intralayer ferromagnetic coupling below 20 K, but does not magnetically order above 2 K, and 3 shows a strong antiferromagnetic interaction between V(II), S = 3/2 and Cr(III), S = 3/2 ions (theta = -116 K) within the 2-D layers. 4 and 4a magnetically order as ferrimagnets at T(c)'s, taken as the onset of magnetization, of 11 and 30 K, respectively. The 2 K remanent magnetizations are 2440 and 2230 emu.Oe mol(-1) and the coercive fields are 1460 and 4060 Oe for 4 and 4a, respectively. Both 4 and 4a clearly show frequency dependence, indicative of spin-glass-like behavior. The glass transition temperatures were at 6.3 and 27 K, respectively, for 4 and 4a. 1-D 5 exhibits antiferromagnetic coupling of -4.94 cm(-1) (H = -2Jsigma(i=1)n.S(i-1) - gmu(B)sigma(i=0)(n)H.S(i)) between the V(II) ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号