首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The degradation of the dye indigo carmine in aqueous solution induced by two oxidative processes (H(2)O(2)/iodide and O(3)) was investigated. The reactions were monitored by electrospray ionization mass spectrometry in the negative ion mode, ESI(-)-MS, and the intermediates and oxidation products characterized by ESI(-)-MS/MS. Both oxidative systems showed to be highly efficient in removing the color of the dye aqueous solutions. In the ESI(-)-MS of the indigo carmine solution treated with H(2)O(2) and H(2)O(2)/iodide, the presence of the ions of m/z 210 (indigo carmine in its anionic form, 1), 216, 226, 235, and 244 was noticeable. The anion of m/z 235 was proposed to be the unprecedented hydroperoxide intermediate 2 formed in solution via an electrophilic attack by hydroxyl and hydroperoxyl radicals of the exocyclic C=C bond of 1. This intermediate was suggested to be rapidly converted into the anionic forms of 2,3-dioxo-1H-indole-5-sulfonic acid (3, m/z 226), 2-amino-alpha-oxo-5-sulfo-benzeneacetic acid (4, m/z 244), and 2-amino-5-sulfo-benzoic acid (5, m/z 216). In the ESI(-)-MS of the indigo carmine solution treated with O(3), two main anions were detected: m/z 216 (5) and 244 (4). Both products were proposed to be produced via an unstable ozonide intermediate. Other anions in this ESI(-) mass spectrum were attributed to be [4 - H + Na](-) of m/z 266, [4 - H](2-) of m/z 121.5, and [5 - H](2-) of m/z 107.5. ESI-MS/MS data were consistent with the proposed structures for the anionic products 2-5.  相似文献   

2.
Indigo Carmine (C16H8N2Na2O8S2), an anionic dye, was removed from aqueous solution by solvent sublation of Indigo Carmine-cetyltrimethylammonium bromide (CTAB) complex (sublate) into 2-octanol. A stoichiometric amount of surfactant (surfactant:dye=2:1) was demonstrated to be able to remove over 93% IC from the aqueous solution in 5 min. The apparent activation energy of attachment of the sublate to bubbles was calculated as 1.3 kJ/mol. Parameters were considered. At the same time, on the base of the complete transport mechanism, a mathematical model for the dye-surfactant complexation was obtained. Furthermore, the simulation of the mathematical and experimental data was made with good results.  相似文献   

3.
Pd‐catalyzed oxidative coupling reaction was of great importance in the aromatic C? H activation and the formation of new C? O and C? C bonds. Sanford has pioneered practical, directed C? H activation reactions employing Pd(OAc)2 as catalyst since 2004. However, until now, the speculated reactive Pd(IV) transient intermediates in these reactions have not been isolated or directly detected from reaction solution. Electrospray ionization tandem mass spectrometry (ESI‐MS/MS) was used to intercept and characterize the reactive Pd(IV) transient intermediates in the solutions of Pd(OAc)2‐catalyzed oxidative coupling reactions. In this study, the Pd(IV) transient intermediates were detected from the solution of Pd(OAc)2‐catalyzed oxidative coupling reactions by ESI‐MS and the MS/MS of the intercepted Pd(IV) transient intermediate in reaction system was the same with the synthesized authentic Pd(IV) complex. Our ESI‐MS(/MS) studies confirmed the presence of Pd(IV) reaction transient intermediates. Most interestingly, the MS/MS of Pd(IV) transient intermediates showed the reductive elimination reactivity to Pd(II) complexes with new C? O bond formation into product in gas phase, which was consistent with the proposed reactivity of the Pd(IV) transient intermediates in solution.  相似文献   

4.
Fingerprinting of the degradation product patterns by electrospray ionization mass spectrometry (ESI‐MS) was evaluated as a tool to monitor the degree of degradation in polyester‐ether networks. Four different crosslinked caprolactone (CL) and/or 1,5‐dioxepan‐2‐one (DXO) networks were subjected to hydrolytic degradation in aqueous solution at 37 °C for up to 147 days. After predetermined time periods, the water‐soluble degradation products were analyzed by ESI‐MS and tandem ESI‐MS. In addition, changes in pH, mass loss, and copolymer composition were determined. In the case of more slowly hydrolyzed CL‐rich (co)polymers, CL and/or DXO oligomers terminated by hydroxyl and carboxyl end groups were predominantly formed as degradation products. However, on prolonged hydrolysis oligomers with attached crosslinking agent dominated the degradation product patterns of more easily hydrolyzed DXO‐rich (co)polymers. It was shown that in the recorded mass spectra the variation of intensities in the series of ions corresponding to DXO and CL/DXO oligomers with or without attached crosslinking agent could be utilized to monitor the extent of hydrolytic degradation in the polyester matrix and the disruption of the network structure. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4617–4629, 2008  相似文献   

5.
The color characteristics of aqueous solutions of synthetic food dyes Azo Rubine, tartrazine, Indigo Carmine, Ponceau 4R, Sunset Yellow, and Brilliant Blue were studied. A formula is proposed for determining the hue of dye solutions.  相似文献   

6.
In previous studies, new electrospray ionization mass spectrometry (ESI‐MS) approaches were developed for the highly sensitive detection of singly and doubly charged anions in positive mode ESI‐MS by using specially synthesized dicationic and tricationic ion‐pairing agents, respectively. By detecting the positively charged ion complex in the positive mode, limits of detection (LODs) for the anions can be lowered by several magnitudes. In this work, we used eighteen newly synthesized tetracationic ion‐pairing agents, constructed with different geometries, linkages and cation moieties, for the detection of eighteen triply charged anions of different structural motifs. The LODs for these anions were from ten to several thousand times lower in the positive selective ion monitoring (SIM) mode than in the negative mode. These tetracationic agents also were shown to be useful for the detection of ?1 and ?2 anions. In addition, the LODs for ?3 anions can be further lowered by monitoring the product fragments of the ion‐pairing complexes in the single reaction monitoring (SRM) mode. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Oxazepam has been subjected to controlled degradation at 100°C for 3 h in 0.5 M HCl and 0.5 M NaOH. Following neutralisation of the degradation mixture and removal of salts by solid‐phase extraction (SPE), isocratic high‐performance liquid chromatography/mass spectrometry (HPLC/MS) using water/methanol (25:75 v/v) as the mobile phase was carried out using a flow diverter to collect fractions prior to their characterisation by electrospray ionisation multi‐stage mass spectrometry (ESI‐MSn) and proposal of the corresponding fragmentation patterns. The elemental compositions of the degradation products and their MS fragments were evaluated using electrospray ionisation quadrupole time‐of‐flight tandem mass spectrometry (ESI‐QTOF‐MS/MS) which was then used to support the proposed fragmentation patterns. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
报道了靛蓝胭脂红在SnO_2透光电极上的复相电子转移动力学参数。由光谱电化学和电化学两种实验方法测定。前一方法为单电位阶跃计时吸收法((SPS/CA)。后一方法为循环伏安法。两种方法的数据处理中均应用了计算机拟合, 较之文献中常规的工作曲线法更为简便、正确。两种方法测定的结果十分一致。进一步的研究表明, 动力学参数值与靛蓝胭脂红的浓度和溶液pH有关, 为靛蓝胭脂红在水溶液中的状态提供了重要信息。  相似文献   

9.
The chromatograms obtained from the gas chromatography‐electron ionization mass spectrometric (GC‐EI‐MS) analysis of extracts containing G‐nerve agents in the presence of diesel, gasoline, etc., are dominated by hydrocarbon backgrounds that “mask” the G‐nerve agents, leading to severe difficulties in identification. This paper presents a practical solution for this challenge by transferring the G‐nerve agents from the organic phase into the aqueous phase using liquid‐liquid extraction (LLE), followed by derivatization with 2‐[(dimethylamino)methyl]phenol (2‐DMAMP), allowing ultrasensitive LC‐ESI‐MS/MS analysis of the G‐derivatives. The proposed approach enables rapid identification of trace amounts of G‐nerve agents with limits of identification (LOIs) at the pg/mL scale.  相似文献   

10.
In order to investigate gas‐phase fragmentation reactions of phosphorylated peptide ions, matrix‐assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) tandem mass (MS/MS) spectra were recorded from synthetic phosphopeptides and from phosphopeptides isolated from natural sources. MALDI‐TOF/TOF (TOF: time‐of‐flight) spectra of synthetic arginine‐containing phosphopeptides revealed a significant increase of y ions resulting from bond cleavages on the C‐terminal side of phosphothreonine or phosphoserine. The same effect was found in ESI‐MS/MS spectra recorded from the singly charged but not from the doubly charged ions of these phosphopeptides. ESI‐MS/MS spectra of doubly charged phosphopeptides containing two arginine residues support the following general fragmentation rule: Increased amide bond cleavage on the C‐terminal side of phosphorylated serines or threonines mainly occurs in peptide ions which do not contain mobile protons. In MALDI‐TOF/TOF spectra of phosphopeptides displaying N‐terminal fragment ions, abundant b–H3PO4 ions resulting from the enhanced dissociation of the pSer/pThr–X bond were detected (X denotes amino acids). Cleavages at phosphoamino acids were found to be particularly predominant in spectra of phosphopeptides containing pSer/pThr–Pro bonds. A quantitative evaluation of a larger set of MALDI‐TOF/TOF spectra recorded from phosphopeptides indicated that phosphoserine residues in arginine‐containing peptides increase the signal intensities of the respective y ions by almost a factor of 3. A less pronounced cleavage‐enhancing effect was observed in some lysine‐containing phosphopeptides without arginine. The proposed peptide fragmentation pathways involve a nucleophilic attack by phosphate oxygen on the carbon center of the peptide backbone amide, which eventually leads to cleavage of the amide bond. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Metals play a very important role in many scientific and environmental fields, and thus their detection and analysis is of great necessity. A simple and very sensitive method has been developed herein for the detection of metals in positive ion mode ESI‐MS. Metal ions are positively charged, and as such they can potentially be detected in positive ion mode ESI‐MS; however, their small mass‐to‐charge (m/z) ratio makes them fall in the low‐mass region of the mass spectrum, which has the largest background noise. Therefore, their detection can become extremely difficult. A better and well‐known way to detect metals by ESI‐MS is by chelating them with complexation agents. In this study eleven different metals, Fe(II), Fe(III), Mg(II), Cu(II), Ru(III), Co(II), Ca(II), Ni(II), Mn(II), Sn(II), and Ag(I), were paired with two commercially available chelating agents: ethylenediaminetetraacetic acid (EDTA) and ethylenediaminedisuccinic acid (EDDS). Since negative ion mode ESI‐MS has many disadvantages compared to positive ion mode ESI‐MS, it would be very beneficial if these negatively charged complex ions could be detected in the positive mode. Such a method is described in this paper and it is shown to achieve much lower sensitivities. Each of the negatively charged metal complexes is paired with six cationic ion‐pairing reagents. The new positively charged ternary complexes are then analyzed by ESI‐MS in the positive single ion monitoring (SIM) and single reaction monitoring (SRM) modes. The results clearly revealed that the presence of the cationic reagents significantly improved the sensitivity for these analytes, often by several orders of magnitude. This novel method developed herein for the detection of metals improved the limits of detection (LODs) significantly when compared to negative ion mode ESI‐MS and shows great potential in future trace studies of these and many other species. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A simple high‐performance liquid chromatography/electrospray ionization tandem mass spectrometric (HPLC/ESI‐MS/MS) method has been developed for the rapid identification of clindamycin phosphate and its degradation products or related impurities in clindamycin phosphate injection. Detection was performed by quadrupole time‐of‐flight mass spectrometry (Q‐TOFMS) via an ESI source in positive mode. Clindamycin phosphate and its related substances lincomycin, 7‐epilincomycin‐2‐phosphate, lincomycin‐2‐phosphate, clindamycin B, clindamycin B‐2‐phosphate, and clindamycin were identified simultaneously by HPLC/ESI‐MS/MS results. Based on the MS/MS spectra of their quasi‐molecular ions, the fragmentation pathways of clindamycin phosphate and its related substances were compared and proposed, which are specific and useful for the identification of the lincosamide antibiotics and related impurities. The method was rapid, sensitive and specific and can be used to identify clindamycin phosphate and its related impurities in clindamycin phosphate injection without control compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A new analytical method based on liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) is proposed and validated for the identification and quantification of alkyl alkylphosphonic acids (AAPAs) in aqueous matrices. Retrospective detection and identification of degradation products of chemical warfare agents is important as an indicator of possible use of chemical warfare agents or of environmental contamination. A commercially available solution of 1,9‐nonanediyl‐bis‐(3‐methylimidazolium)bisfluoride (NBMI) allowed detection of AAPAs by positive mode electrospray ionization mass spectrometry by forming an adduct with AAPAs. MS/MS experiments using an ion trap analyzer were carried out for unambiguous identification of AAPAs. Different parameters were optimized in order to obtain both an adequate chromatographic separation and a high sensitivity using experimental design methodology. Quantification was done with matrix‐matched calibration standards of AAPAs. The method was validated in terms of linearity (r2 >0.982), intra‐ and inter‐day precisions (RSD below 15%), and robustness. The method is sensitive enough for the determination of AAPAs in aqueous matrices, with limits of detection in the 1–5 ng mL–1 range and limits of quantification in the 5–20 ng mL–1 range. Finally, the method was successfully applied to determine these AAPAs in aqueous samples provided by the Organization for the Prohibition of Chemical Weapons during 26th and 29th official proficiency tests. The added advantage of this method is identification of low mass range analyte at high mass range, which obviates the background noise at low mass range. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A novel ion/molecule reaction was observed to occur under electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photo ionization (APPI) conditions, leading to dimerization of ionized 4‐(methyl mercapto)‐phenol followed by fast H· loss. The reaction is particularly favored during ESI, which suggests that this ion/molecule reaction can occur both in the solution inside the ESI‐charged droplets and in the gas‐phase environment of most other atmospheric pressure ionization techniques. The dimerization reaction is inherent to the electrolytic process during ESI, whereas it is more by ion/molecule chemistry in nature during APCI and APPI. From the tandem mass spectrometry (MS/MS) data, accurate mass measurements, hydrogen/deuterium (H/D) exchange experiments and density functional theory (DFT) calculations, two methyl sulfonium ions appear to be the most likely products of this electrophilic aromatic substitution reaction. The possible occurrence of this unexpected reaction complicates mass spectral data interpretation and can be misleading in terms of structural assignment as reported herein for 4‐(methyl mercapto)‐phenol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The fluorescent dye 8‐anilino‐1‐naphthalene sulfonate (ANS) is known to interact with proteins by conformation‐specific hydrophobic interactions and rather nonspecific electrostatic interactions. To which category the complexes detectable by mass spectrometry (MS) belong is still the subject of debate. Here, the Tanford transition in β‐lactoglobulin (BLG) is exploited as an experimental device to expose hydrophobic binding sites by an increase in pH, rather than, as usually done, by lowering the pH. Complex formation is monitored by electrospray ionization (ESI)‐MS and fluorescence spectroscopy. Both techniques reveal stronger ANS binding to BLG at pH 7.9 than at pH 5.9, suggesting that dye binding inside the calyx, which is known to be hydrophobically driven in solution, can contribute to the complexes detected by ESI‐MS. Electrostatic interactions between the protein and the ANS sulfonate group can only be weaker at pH 7.9 than at pH 5.9, supporting the interpretation of the results by the protein conformational change. Lysozyme is used as a negative control, which shows no variation in the interaction with ANS in the same range of pH, in the absence of conformational changes. However, comparison of MS and fluorescence data at variable pH for BLG and myoglobin (Mb) suggests that conformation‐specific ANS binding to proteins is detectable by ESI‐MS only inside well‐structured cavities of folded structures, like the BLG calyx and apoMb heme pocket. Indeed, ANS interactions with highly dynamic structures or molten globules, although detectable in solution, are easily lost in the gas phase. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Capsazepine is an antagonist of the transient receptor potential channel vanilloid 1 (TRPV1), which is known to play an important role in the regulation of pain and inflammation. A selective and sensitive quantitative method for the determination of capsazepine by HPLC‐ESI/MS/MS was developed. The method consisted of a protein precipitation extraction followed by analysis using liquid chromatography electrospray quadrupole ion trap mass spectrometry. The chromatographic separation was achieved using a 100 × 2 mm C18 Waters Symmetry column combined with a gradient mobile phase composed of acetonitrile and 0.1% formic acid aqueous solution at a flow rate of 220 µL/min. The mass spectrometer was operating in full‐scan MS/MS mode using two‐segment analysis. An analytical range of 10–5000 ng/mL was used in the calibration curve constructed in rat plasma. The inter‐batch precision and accuracy observed were 10.1, 6.4 and 6.1% and 100.8, 98.5 and 106.2% at 50, 500 and 5 000 ng/mL, respectively. An in vitro metabolic stability using rat, dog or mouse liver microsomes was performed to determine the intrinsic clearance of capsazepine. The results suggest a very rapid degradation with T1/2 ranging from 2.6 to 4.3 min and a high clearance, suggesting that drug bioavailability is considerably reduced following extravascular administrations, consequently affecting drug response. Three metabolites were identified by HPLC‐MS/MS. S‐hydroxylation (M + 16), oxidative desulfuration (M − 16) and desulfuration (M − 32) metabolites of capsazepine were observed following exposure to rat, dog and mouse microsomes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Phosphatidylethanolamines (PE) are one of the major components of cells membranes, namely in skin and in retina, that are continuously exposed to solar UV radiation being major targets of photooxidation damage. In addition, due to the presence of the free amine group, PE can also undergo glycation, in hyperglycemic conditions which may increase the susceptibility to oxidation. The aim of this study is to develop a model, based on mass spectrometry (MS) analysis, to identify photooxidative degradation of selected PE (POPE: PE 16:0/18:1, PLPE: PE 16:0/18:2, PAPE: PE 16:0/20:4) and glycated PEs due to UV irradiation. Photooxidation products were analysed by electrospray ionization MS (ESI‐MS) and tandem MS (ESI‐MS/MS) in positive and negative mode. Emphasis is placed in the influence of glycation in the generation of distinct photooxidation products. ESI‐MS spectra of PE after UV photo‐irradiation showed mainly hydroperoxy derivatives, due to oxidation of unsaturated fatty acyl chains. Glycated PE gave rise to several new photooxidation products formed due to oxidative cleavages of the glucose moiety, namely between C1 and C2, C2 and C3, and C5 and C6 of this sugar unit. These new products were identified by ESI‐MS/MS in positive mode showing distinct neutral loss depending on the different structure of the polar head group. These new identified advanced glycated photooxidation products may have a deleterious role in the etiology of diabetic retinopathy and in diabetic retinal microvascular complications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Native non‐covalently bonded protein‐protein and protein‐substrate complexes are of great interest and have been extensively studied by electrospray ionization mass spectrometry (ESI‐MS). Multiply charged protein homomultimeric complexes are shown to form by ESI‐MS. This study addresses factors that can artificially induce the formation of multiply charged protein homomultimeric complexes. Cytochrome c (Cyt c) and ubiquitin, which are monomers in solution, were found to generate (Cyt c)mn+ by electrospray ionization (ESI). The homomultimeric complexes were not limited to dimeric complexes but include also multiply charged trimers, tetramers, and pentamers. The observation of these homomultimeric complexes has never been revealed from a Cyt c solution at the concentration as low as 10 μM. Increasing the concentration of Cyt c enhanced the formation of (Cyt c)mn+ as expected; however, the protein concentration does not affect the relative intensities of monomeric and dimeric complexes. Additionally the enrichment of NH4OH also promotes the formation of (Cyt c)mn+. Notably, source collision‐induced dissociations (source‐CID) of (Cyt c)mn+ alter the charge state distribution (CSD) and may lead to an incorrect interpretation of Cyt c conformations. Hence, extra care should be taken when using CSD to interpret the conformation of a protein derived from ESI‐MS.  相似文献   

19.
Three lipocyclopeptide antibiotics, aspartocins A (1), B (2), and C (3), were obtained from the aspartocin complex by HPLC separation methodology. Their structures were elucidated using previously published chemical degradation results coupled with spectroscopic studies including ESI‐MS, ESI‐Nozzle Skimmer‐MSMS and NMR. All three aspartocin compounds share the same cyclic decapeptide core of cyclo [Dab2 (Asp1‐FA)‐Pip3‐MeAsp4‐Asp5‐Gly6‐Asp7‐Gly8‐Dab9‐Val10‐Pro11]. They differ only in the fatty acid side chain moiety (FA) corresponding to (Z)‐13‐methyltetradec‐3‐ene‐carbonyl, (+,Z)‐12‐methyltetradec‐3‐ene‐carbonyl and (Z)‐12‐methyltridec‐3‐ene‐carbonyl for aspartocins A (1), B (2), and C (3), respectively. All of the sequence ions were observed by ESI‐MSMS of the doubly charged parent ions. However, a number of the sequence ions observed were of low abundance. To fully sequence the lipocyclopeptide antibiotic structures, these low abundance sequence ions together with complementary sequence ions were confirmed by ESI‐Nozzle‐Skimmer‐MSMS of the singly charged linear peptide parent fragment ions H‐Asp5‐Gly6‐Asp7‐Gly8‐Dab9‐Val10‐Pro11‐Dab21+‐Asp1‐FA. Cyclization of the aspartocins was demonstrated to occur via the β‐amino group of Dab2 from ions of moderate intensity in the ESI‐MSMS spectra. As the fatty acid moieties do not undergo internal fragmentations under the experimental ESI mass spectral conditions used, the 14 Da mass difference between the fatty acid moieties of aspartocins A (1) and B (2) versus aspartocin C (3) was used as an internal mass tag to differentiate fragment ions containing fatty acid moieties and those not containing the fatty acid moieties. The most numerous and abundant fragment ions observed in the tandem mass spectra are due to the cleavage of the tertiary nitrogen amide of the pipecolic acid residue‐3 (16 fragment ions) and the proline residue‐11 (7 fragment ions). In addition, the neutral loss of ethanimine from α,β‐diaminobutyric acid residue 9 was observed for the parent molecular ion and for 7 fragment ions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Ketorolac, a nonsteroidal anti‐inflammatory drug, was subjected to forced degradation studies as per International Conference on Harmonization guidelines. A simple, rapid, precise, and accurate high‐performance liquid chromatography combined with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (LC/ESI/Q/TOF/MS/MS) method has been developed for the identification and structural characterization of stressed degradation products of ketorolac. The drug was found to degrade in hydrolytic (acidic, basic, and neutral), photolytic (acidic, basic, and neutral solution), and thermal conditions, whereas the solid form of the drug was found to be stable under photolytic conditions. The method has shown adequate separation of ketorolac tromethamine and its degradation products on a Grace Smart C‐18 (250 mm × 4.6 mm i.d., 5 µm) column using 20 mM ammonium formate (pH = 3.2): acetonitrile as a mobile phase in gradient elution mode at a flow rate of 1.0 ml/min. A total of nine degradation products were identified and characterized by LC/ESI/MS/MS. The most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation of the [M + H]+ ions of ketorolac and its degradation products. In silico toxicity of the drug and degradation products was investigated by using topkat and derek softwares. The method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonization guidelines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号