首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new mixed aza-thia crowns 5-aza-2,8-dithia[9]-(2,9)-1,10-phenanthrolinophane (L(4)) and 2,8-diaza-5-thia[9]-(2,9)-1,10-phenanthrolinophane (L(7)) have been synthesized and characterized. The coordination behavior of L(4) and L(7) toward the metal ions Cu(II), Zn(II), Pb(II), Cd(II), Hg(II), and Ag(I) was studied in aqueous solution by potentiometric methods, in CD3CN/D2O 4:1 (v/v) by (1)H NMR titrations and in the solid state. The data obtained were compared with those available for the coordination behavior toward the same metal ions of structurally analogous mixed donor macrocyclic ligands L(1)-L(3), L(5), L(6): all these contain a phenanthroline subunit but have only S/O/N(aromatic) donor groups in the remaining portion of the ring and are, therefore, less water-soluble than L(4) and L(7). The complexes [Cd(NO3)2(L(5))], [Pb(L(7))](ClO4)2 x 1/2MeCN, [Pb(L(4))](ClO4)2 x MeCN, and [Cu(L(7))](ClO4)2 x 3/2MeNO2 were characterized by X-ray crystallography. The efficacy of L(1)-L(7) in competitive liquid-liquid metal ion extraction of Cu(II), Zn(II), Cd(II), Pb(II), Ag(I), and Hg(II) was assessed. In the absence of Hg(II), a clear extraction selectivity for Ag(I) was observed in all systems investigated.  相似文献   

2.
The coordination chemistry of the N-aminopropyl pendant arm derivatives (L1c-4c) of the mixed donor macrocyclic ligands [12]aneNS2O, [12]aneNS3, [12]aneN2SO, and [15]aneNS2O2(L1a-4a) towards Cu(II), Zn(II), Cd(II), Hg(II), and Pb(II) in aqueous solution has been investigated. The protonation and stability constants with the aforementioned metal ions were determined potentiometrically and compared, where possible, with those of the unfunctionalised macrocycles. The measured values show that Hg(II) and Cu(II) in water have the highest affinity for all ligands considered, with the N-aminopropyl pendant arm weakly coordinating the metal centres. Crystals suitable for X-ray diffraction analysis were grown for the perchlorate salt (H2L1c)(ClO4)2.dmf, and for the 1 : 1 complexes [Cd(L3a)(NO3)2](1), [Cu(L4a)dmf](ClO4)2(2), [Zn(L1c)(ClO4)]ClO4(3), [Cd(L1c)(NO3)]NO3(4), and [Hg(L2c)](ClO4)2(5). Their structures show the macrocyclic ligands adopting a folded conformation, which for the 12-membered systems can be either [2424] or [3333] depending on the nature of the metal ion. L1c-4c were also functionalised at the primary amino pendant group with different fluorogenic subunits. In particular the N-dansylamidopropyl (Lnd, n= 1-4), and the N-(9-anthracenylmethyl)aminopropyl (Lne, n= 1, 2, 4, ) pendant arm derivatives of L1a-4a were synthesised and their optical responses to the above mentioned metal ions were investigated in MeCN/H2O (4 : 1 v/v) solutions.  相似文献   

3.
The amino acid sequence MxCxxC is conserved in many soft-metal transporters that are involved in the control of the intracellular concentration of ions such as Cu(I), Hg(II), Zn(II), Cd(II), and Pb(II). A relevant task is thus the selectivity of the motif MxCxxC for these different metal ions. To analyze the coordination properties and the selectivity of this consensus sequence, we have designed two model peptides that mimic the binding loop of the copper chaperone Atx1: the cyclic peptide P(C) c(GMTCSGCSRP) and its linear analogue P(L) (Ac-MTCSGCSRPG-NH2). By using complementary analytical and spectroscopic methods, we have demonstrated that 1:1 complexes are obtained with Cu(I) and Hg(II), whereas 1:1 and 1:2 (M:P) species are successively formed with Zn(II), Cd(II), and Pb(II). The complexation properties of the cyclic and linear peptides are very close, but the cyclic compound provides systematically higher affinity constants than its unstructured analogue. The introduction of a xPGx motif that forms a type II beta turn in P(C) induces a preorganization of the binding loop of the peptide that enhances the stabilities of the complexes (up to 2 orders of magnitude difference for the Hg complexes). The affinity constants were measured in the absence of any reducing agent that would compete with the peptides and range in the order Hg(II) > Cu(I) > Cd(II) > Pb(II) > Zn(II). This sequence is thus highly selective for Cu(I) compared to the essential ion Zn(II) that could compete in vivo or compared to the toxic ions Cd(II) and Pb(II). Only Hg(II) may be an efficient competitor of Cu(I) for binding to the MxCxxC motif in metalloproteins.  相似文献   

4.
Protonation and Zn(II), Cd(II) and Hg(II) coordination with the ligand 5-aminoethyl-2,5,8-triaza-[9]-10,23-phenanthrolinophane (L2), which contains an aminoethyl pendant attached to a phenanthroline-containing macrocycle, have been investigated by means of potentiometric, 1H NMR and spectrofluorimetric titrations in aqueous solutions. The coordination properties of L2 are compared with those of the ligand 2,5,8-triaza-[9]-10,23-phenanthrolinophane (L1). Ligand protonation occurs on the aliphatic amine groups and does not involve directly the heteroaromatic nitrogens. The fluorescence emission properties of L2 are controlled by the protonation state of the benzylic nitrogens: when not protonated, their lone pairs are available for an electron transfer process to the excited phenanthroline, quenching the emission. As a consequence, the ligand is emissive only in the highly charged [H3L2]3+ and [H4L2]4+ species, where the benzylic nitrogens are protonated. Considering metal complexation, both [ML1]2+ and [ML2]2+ complexes (M = Zn(II) and Cd(II)) are not emissive, since the benzylic nitrogens are weakly involved in metal coordination, and, once again, they are available for quenching the fluorescence emission. Protonation of the L2 complexes to give [MHL2]3+ species, instead, leads to a recovery of the fluorescence emission. Complex protonation, in fact, occurs on the ethylamino group and gives a marked change of the coordination sphere of the metals, with a stronger involvement in metal coordination of the benzylic nitrogens; consequently, their lone pairs are not available for the process of emission quenching.  相似文献   

5.
The formation of complexes of Zn(II), Cd(II), Hg(II), and Pb(II) and N-carboxymethyl-D,L-threonine (H2CMT, H2L) in aqueous solutions has been studied by spectrophotometric and potentiometric methods. The complexation model for each system has been established by the HYPERQUAD program from the potentiometric data. Three different behaviors are found: ML2H, MLH, ML, MLOH, and ML2 complexes are formed by Zn(II) and Cd(II) ions, ML2H, ML, MLOH, and ML2 are formed by Hg(II) ion, and only 1/1 complexes MLH, ML, and MLOH are formed by the Pb(II) ion. The formation constants determined for all these complexes allow simulation of experimental titration curves with good agreement. The speciation of multimetal systems with H2CMT shows that this compound is a good and selective ligand at low pH for the Hg(II) ion.  相似文献   

6.
Two new ligands 7-anthracenylmethyl-13-methylpyridyl-1,4,10-trioxa-7,13-diazacyclopentadecane (L4) and 7-anthracenylmethyl-13-(2,2-dimethyl-2-hydroxyethyl)-1,4,10-trioxa-7,13-diazacyclopentadecane (L(5)) have been synthesized and characterized. Both derive from 7-anthracenylmethyl-1,4,10-trioxa-7,13-diazacyclopentadecane (L(3)) and differ for having a differently functionalized pendant arm covalently attached to the remaining secondary nitrogen donor of the macrocyclic framework. The protonation and coordination behavior of L(4), L(5), and the unbranched L(3) with metal ions have been studied in MeCN/H2O (1:1 v/v, 298.1 K, I = 0.1 M) using potentiometric methods. The crystal structures of L(3), [(H2L(3))(HL(3))](ClO4)3, and the complex [CdL(3)(NO3)2] have been determined by single-crystal X-ray methods. The fluorescent behavior of L(3)-L(5) in the presence of Cu(II), Zn(II), Cd(II), Hg(II), and Pb(II) has been studied as a function of pH in MeCN/H2O (1:1 v/v). The presence of Cu(II), Hg(II), or Pb(II) does not affect the fluorescent behavior observed for the three free ligands upon changing the pH. Interestingly, the fluorescent emission of L(3) and L(5) is selectively enhanced only in the presence of Cd(II) at basic pH. The same effect is observed for L4 in the presence of Cd(II) or Zn(II) at about pH 7.  相似文献   

7.
New dioxadiaza- and trioxadiaza-macrocycles containing one rigid dibenzofuran unit (DBF) and N-(2-aminoethyl) pendant arms were synthesized, N,N'-bis(2-aminoethyl)-[17](DBF)N(2)O(2) (L(1)) and N,N'-bis(2-aminoethyl)-[22](DBF)N(2)O(3) (L(2)), respectively. The binding properties of both macrocycles to metal ions and structural studies of their metal complexes were carried out. The protonation constants of both compounds and the stability constants of their complexes with Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Pb(2+) were determined at 298.2 K, in aqueous solutions, and at ionic strength 0.10 mol dm(-3) in KNO(3). Mononuclear complexes with both ligands were formed, and dinuclear complexes were only found for L(2). The thermodynamic binding affinities of the metal complexes of L(2) are lower than those of L(1) as expected, but the Pb(2+) complexes of both macrocycles exhibit close stability constant values. On the other hand, the binding affinities of Cd(2+) and Pb(2+) for L(1) are very high, when compared to those of Co(2+), Ni(2+) and Zn(2+). These interesting properties were explained by the presence of the rigid DBF moiety in the backbone of the macrocycle and to the special match between the macrocyclic cavity size and the studied larger metal ions. To elucidate the adopted structures of complexes in solution, the nickel(II) and copper(II) complexes with both ligands were further studied by UV-vis-NIR spectroscopy in DMSO-H(2)O 1 : 1 (v/v) solution. The copper(II) complexes were also studied by EPR spectroscopy in the same mixture of solvents. The crystal structure of the copper complex of L(1) was also determined. The copper(II) displays an octahedral geometry, the four nitrogen atoms forming the equatorial plane and two oxygen atoms, one from the DBF unit and the other one from the ether oxygen, in axial positions. One of the ether oxygens of the macrocycle is out of the coordination sphere. Our results led us to suggest that this geometry is also adopted by the Co(2+) to Zn(2+) complexes, and only the larger Cd(2+) and Pb(2+) manage to form complexes with the involvement of all the oxygen atoms of the macrocyclic backbone.  相似文献   

8.
《Analytical letters》2012,45(8):575-584
Abstract

The complexations of a new ligand, o-(2-thiazolylazo)-4-ethylphenol(TAEP) with Ca(II), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hq(II) and Pb(II) have been studied by potentiometric titrations, at 25.0 ± 0.2°C and an ionic strength of 0.1 in 30% v/v dioxane-water mixture. The dissociation constant and spectral data of TAEP and formation constants of the complexes containing various molar ratios of metal ion to ligand, are reported. It is observed that Ca(II) forms only an ML complex in any molar ratios, whereas other metal ions react in two steps forming ML and ML2 complexes in a 1:3 molar ratio. In the case of 1:1 and 1:2 molar ratios, Mn(II), Co(II), Cd(II) and Hg(II) seemed to form bi- or poly-nuclear complexes because of slightly different formation curves from those of 1:3 molar ratio. The sequence of the first successive formation constant is Cu > Hg > Ni > Pb > Co > Zn > Cd > Mn > Ca, showing Mellor-Maley's order. Further correlation is shown between the formation constants and the second ionization potentials of the metals.  相似文献   

9.
The macrocycles L(1)-L(3) incorporating N(2)S(3)-, N(2)S(2)O-, and N(2)S(2)-donor sets, respectively, and containing the 1,10-phenanthroline unit interact in acetonitrile solution with heavy metal ions such as Pb(II), Cd(II), and Hg(II) to give 1:1 ML, 1:2 ML(2), and 2:1 M(2)L complex species, which specifically modulate the photochemical properties of the ligands. The stoichiometry of the complex species formed during spectrofluorometric titrations and their formation constants in MeCN at 25 degrees C were determined from fluorescence vs M(II)/L molar ratio data. The complexes [Pb(L(1))][ClO(4)](2).(1)/(2)H(2)O (1), [Pb(L(2))][ClO(4)](2).MeNO(2) (1a), [Pb(L(3))(2)][ClO(4)](2).2MeCN (1b), and [Cd(L(3))][NO(3)](2) (2b) were also characterized by X-ray diffraction studies. The conformation adopted by L(1)-L(3) in these species reveals the aliphatic portion of the rings folded over the plane containing the heteroaromatic moiety with the ligands trying to encapsulate the metal center within their cavity. In 1, 1a, and 2b the metal ion completes the coordination sphere by interacting with counteranion units and solvent molecules. On the contrary, the 1:2 complex 1b shows Pb(II) sandwiched between two symmetry-related molecules of L(3) reaching an overall [4N + 4S] eight-coordination.  相似文献   

10.
The binding properties of dioxadiaza- ([17](DBF)N2O2) and trioxadiaza- ([22](DBF)N2O3), macrocyclic ligands containing a rigid dibenzofuran group (DBF), to metal cations and structural studies of their metal complexes have been carried out. The protonation constants of these two ligands and the stability constants of their complexes with Ca2+, Ba2+, and Mn2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+, were determined at 298.2 K in methanol-water (1:1, v/v), and at ionic strength 0.10 mol dm-3 in KNO3. The values of the protonation constants of both ligands are similar, indicating that no cavity size effect is observed. Only mononuclear complexes of these ligands with the divalent metal ions studied were found, and their stability constants are lower than expected, especially for the complexes of the macrocycle with smaller cavity size. However, the Cd2+ complex with [17](DBF)N2O2 exhibits the highest value of stability constant for the whole series of metal ions studied, indicating that this ligand reveals a remarkable selectivity for cadmium(II) in the presence of all the metal ions studied, except copper(II), indicating that this ligand reveals a remarkable selectivity for cadmium(II) in the presence of the mentioned metal ions. The crystal structures of H2[17](DBF)N2O3(2+) (diprotonated form of the ligand) and of its cadmium complex were determined by X-ray diffraction. The Cd2+ ion fits exactly inside the macrocyclic cavity exhibiting coordination number eight by coordination to all the donor atoms of the ligand, and additionally to two oxygen atoms from one nitrate anion and one oxygen atom from a water molecule. The nickel(II) and copper(II) complexes with the two ligands were further studied by UV-vis-NIR and the copper(II) complexes also by EPR spectroscopic techniques in solution indicating square-pyramidal structures and suggesting that only one nitrogen and oxygen donors of the ligands are bound to the metal. However an additional weak interaction of the second nitrogen cannot be ruled out.  相似文献   

11.
Schiff base namely 2-aminomethylthiophenyl-4-bromosalicylaldehyde (ATS)(4-bromo-2-(thiophen-2-yl-imino)methylphenol) and its metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, ESR and thermal analysis (TGA). The analytical data of the complexes show the formation of 1:2 [M:L] ratio of the formula [ML2], where M represents Ni(II), Zn(II) and Cu(II) ions, while L represents the deprotonated Schiff base. IR spectra show that ATS is coordinated to the metal ions in a bidentate manner through azomethine-N and phenolic-oxygen groups. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria. A cytotoxicity of the compounds against colon (HCT116) and larynx (HEP2) cancer cells have been studied. Protonation constants of (ATS) ligand and stability constants of its Cu2+, Co2+, Mn2+, Zn2+ and Ni2+ complexes were determined by potentiometric titration method in 50% (v/v) DMSO-water solution at ionic strength of 0.1 M NaNO3.  相似文献   

12.
Novel hexachlorocyclodiphosph(V)azane of sulfaguanidine, H(4)L, l,3-[N'-amidino-sulfanilamide]-2,2,2,4,4,4-hexachlorocyclodiphosph(V)azane was prepared and its coordination behaviour towards the transition metal ions Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO(2)(II) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV-vis, (1)H NMR, mass spectra, reflectance, magnetic susceptibility measurements and thermogravimetric analysis (TGA). The hyperfine interactions in the isolated complex compounds were studied using 14.4keV gamma-ray from radioactive (57)Co (M?ssbauer spectroscopy). The data show that the ligand are coordinated to the metal ions via the sulfonamide O and deprotonated NH atoms in an octahedral manner. The H(4)L ligand forms complexes of the general formulae [(MX(z))(2)(H(2)L)H(2)O)(n)] and [(FeSO(4))(2) (H(4)L) (H(2)O)(4)], where X=NO(3) in case of UO(2)(II) and Cl in case of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II). The molar conductance data show that the complexes are non-electrolytes. The thermal behaviour of the complexes was studied and different thermodynamic parameters were calculated using Coats-Redfern method. Most of the prepared complexes showed high bactericidal activity and some of the complexes show more activity compared with the ligand and standards.  相似文献   

13.
Xing W  Ingman F 《Talanta》1982,29(8):707-711
The complexation reaction between Alizarin complexan ([3-N,N-di(carboxymethyl)aminomethyl]-1,2-dihydroxyanthraquinone; H(4)L) and zinc(II), nickel(II), lead(II), cobalt(II) and copper(II) has been studied by a spectrophotometric method. All these metal ions form 1:1 complexes with HL; 2:1 metal:ligand complex were found only for Pb(II) and Cu(II). The stability constants are (ionic strength I = 0.1, 20 degrees C): Zn(2+) + HL(3-) right harpoon over left harpoon ZnHL(-) log K +/- 3sigma(log K) = 12.19 +/- 0.09 (I = 0.5) Ni(2+) + HL(3-) right harpoon over left harpoon NiHL(-) log K +/- 3sigma(log K) = 12.23 +/- 0.21 Pb(2+) + HL(3-) right harpoon over left harpoon PbHL(-) log K +/- 3sigma(log K) = 11.69 +/- 0.06 PbHL(-) + Pb(2+) right harpoon over left harpoon Pb(2)L + H(+) log K approximately -0.8 Co(2+) + HL(3-) right harpoon over left harpoon CoHL(-) log K 3sigma(log K) = 12.25 + 0.13 Cu(2+) + HL(3-) right harpoon over left harpoon CuHL(-) log K 3sigma(log K) = 14.75 +/- 0.07 Cu(2+) + CuHL(-) right harpoon over left harpoon Cu(2)L + H(+) log K approximately 3.5 The solubility and stability of both the reagent and the complexes and the closenes of the values of the stability constants make this reagent suitable for the photometric detection of several metal ions in the eluate from an ion-exchange column.  相似文献   

14.
Owing to the presence of multiple donor atoms such as N(1)H, C(2)SH, N(3), C(4)O, and CNC in the newly synthesized antimetabolite, namely, 5-dimethylaminomethyl-2-thiouracil, preferences of the hetero-atoms for coordination with metal ions like Cu(II), Zn(II), Cd(II), and Hg(II) were explored. The complexes isolated were characterized by chemical analysis and spectroscopic techniques. The ligand behaves as a bidentate/tetradentate chelating ligand. Invariably in all the complexes, one of the donor atoms is the soft C(2)SH. The kinetic and thermodynamic parameters for the thermal decomposition of the metal chelates were evaluated using (Coats–Redfern) and (Madhusudanan–Krishnan–Ninan) equations. The antimicrobial studies show that the copper(II) complexes are more active than the other complexes.  相似文献   

15.
New N-(3-aminopropyl) (L1, L2) and (2-cyanoethyl) (L3, L4) derivatives of a 14-membered tetraazamacrocycle containing pyridine have been synthesized. The protonation constants of L1 and L2 and the stability constants of their complexes with Ni2+, Cu2+, Zn2+ and Cd2+ metal ions were determined in aqueous solutions by potentiometry, at 298.2 K and ionic strength 0.10 mol dm(-3) in KNO3. Both compounds have high overall basicity due to the presence of the aminopropyl arms. Their copper(II) complexes exhibit very high stability constants, which sharply decrease for the complexes of the other studied metal ions, as usually happens with polyamine ligands. Mono- and dinuclear complexes are formed with L2 as well as with L1, but the latter exhibits mononuclear complexes with slightly higher K(ML) values while the dinuclear complexes of L2 are thermodynamically more stable. The presence of these species in solution was supported by UV-VIS-NIR and EPR spectroscopic data. The single crystal structures of [Cu(H2L2)(ClO4)]3+ and [CoL3Cl]+ revealed that the metal centres are surrounded by the four nitrogen atoms of the macrocycle and one monodentate ligand, adopting distorted square pyramidal geometries. In the [CoL3Cl]+ complex, the macrocycle adopts a folded arrangement with the nitrogen atom opposite to the pyridine at the axial position while in the [Cu(H2L2)(ClO4)]3+ complex, the macrocycle adopts a planar conformation with the three aminopropyl arms located at the same side of the macrocyclic plane.  相似文献   

16.
The synthesis and characterisation of complexes of the hexaamine cage ligand facial-1,5,9,13,20-pentamethyl-3,7,11,15,18,22-hexaazabicyclo[7.7.7]tricosane (fac-(Me)(5)-D(3 h)tricosaneN(6)) with Zn(II), Cd(II) and Hg(II) is reported. Single crystal X-ray structural analyses of the Cd(II) and Hg(II) complexes reveal that the coordination spheres of both cations have an unusual trigonal prismatic stereochemistry organised by the ligand substituents and cavity size. This is unprecedented for hexaamine complexes of these metal ions, and in stark contrast to the distorted octahedral stereochemistry found previously for the analogous Zn(II) complex. An X-ray structural analysis of single crystals of the diprotonated ligand [fac-(Me)(5)-D(3h)tricosaneN(6) - 2H](CF(3)SO(3))(2) shows that it also prefers to adopt a trigonal prismatic structure. The (13)C NMR spectra of the metal complexes indicate that their structures are preserved at 20 degrees C in solution. However, heating the Zn(II) complex to approximately 130 degrees C appears to convert it to the trigonal prismatic form. In contrast cooling the trigonal prismatic Hg(II) complex to -80 degrees C does not convert it to the octahedral structure. The results are also compared to the structures of various other transition metal ion complexes of the same or similar ligands. This comparison yields overall an appreciation of the factors that determine the final structures of complexes formed with such tricosaneN(6) ligands.  相似文献   

17.
New metal complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with salicylidine-2-aminobenzimidazole (SABI) are synthesized and their physicochemical properties are investigated using elemental and thermal analyses, IR, conductometric, solid reflectance and magnetic susceptibility measurements. The base reacts with these metal ions to give 1:1 (Metal:SABI) complexes; in cases of Fe(III), Co(II), Cu(II), Zn(II) and Cd(II) ions; and 1:2 (Metal:SABI) complexes; in case of Ni(II) ion. The conductance data reveal that Fe(III) complex is 2:1 electrolyte, Co(II) is 1:2 electrolyte, Cu(II), Zn(II) and Cd(II) complexes are 1:1 electrolytes while Ni(II) is non-electrolyte. IR spectra showed that the ligand is coordinated to the metal ions in a terdentate mannar with O, N, N donor sites of the phenloic -OH, azomethine -N and benzimidazole -N3. Magnetic and solid reflectance spectra are used to infer the coordinating capacity of the ligand and the geometrical structure of these complexes. The thermal decomposition of the complexes is studied and indicates that not only the coordinated and/or crystallization water is lost but also that the decomposition of the ligand from the complexes is necessary to interpret the successive mass loss. Different thermodynamic activation parameters are also reported, using Coats-Redfern method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Wu G  Wang XF  Okamura TA  Sun WY  Ueyama N 《Inorganic chemistry》2006,45(21):8523-8532
Seven coordination compounds, [Zn(L3)Cl2] . MeOH . H2O (1), [Mn(L3)2Cl2] . 0.5EtOH . 0.5H2O (2), [Cu3(L2)2Cl6] . 2DMF (3), [Cu3(L2)2Br6] . 4MeOH (4), [Hg2(L4)Cl4] (5), [Hg2(L4)Br4] (6), and [Hg3(L4)2I6] . H2O (7), were synthesized by the reactions of ligands 1,3,5-tris(3-pyridylmethoxyl)benzene (L3), 1,3,5-tris(2-pyridylmethoxyl)benzene (L2), and 1,3,5-tris(4-pyridylmethoxyl)benzene (L4) with the corresponding metal halides. All the structures were established by single-crystal X-ray diffraction analysis. In complexes 1 and 2, L3 acts as a bidentate ligand using two of three pyridyl arms to link two metal atoms to result in two different 1D chain structures. In complexes 3 and 4, each L2 serves as tridentate ligand and connects three Cu(II) atoms to form a 2D network structure. Complexes 5 and 6 have the same framework structure, and L4 acts as a three-connecting ligand to connect Hg(II) atoms to generate a 3D 4-fold interpenetrated framework, while the structure of complex 7 is an infinite 1D chain. The results indicate that the flexible ligands can adopt different conformations and thus can form complexes with varied structures. In addition, the coordination geometry of the metal atom and the species of the halide were found to have great impact on the structure of the complexes. The photoluminescence properties of the complexes were investigated, and the Zn(II), Mn(II) and Hg(II) complexes showed blue emissions in solid state at room temperature.  相似文献   

19.
1,6-Bis(2-formylphenyl) hexane (I) was derived from 1,6-dibromohexane with salicylaldehyde and K2CO3 and the ligand (L) was derived from compound I and 2,6-diaminopyridine. Then, the Cu(II), Ni(II), Pb(II), Zn(II), Cd(II), and La(III) complexes with L were synthesized by the reaction of this ligand and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Zn(NO3)2 · 6H2O, Cd(NO3)2 · 6H2O, and La(NO3)3 · 6H2O, respectively. The ligand and its metal complexes were characterized by elemental analysis, IR, 1H and 13C NMR, UV-Vis spectra, magnetic susceptibility, conductivity measurements, and mass spectra. All complexes are diamagnetic and the Cu(II) complex is binuclear. The article is published in the original.  相似文献   

20.
Two tetradentate bispinene-bipyridine type ligands, each with six stereogenic carbon centers, were synthesized from (-)-alpha-pinene. Their ability to predetermine chiral configurations at metal centers was studied. The two diastereoisomers, L1 and L2, differ in their absolute configuration at the bridgehead position. These ligands form metal complexes with Ag(I), Pd(II), Zn(II), Cu(II), and Cd(II), with coordination numbers four, five, and six and with complete control of chirality at the metal centers. Using L1 rather than L2 leads to complexes of inverted absolute configuration at the metal centers. These diastereomeric coordination species can be obtained either as separate compounds or, in some cases, as solids containing them in a 1:1 ratio. Ligands L1 and L2 thus show that the pinene-bipyridines are versatile molecules for the formation of metal complexes with predetermined chirality. In all cases, absolute configurations were determined in the solid state by X-ray diffraction methods and in solution by CD spectroscopy. The sign of exciton couplets from the pi-pi* transitions always agrees with the expectations for a given local configuration at the metal center. The five-coordinate, inherently chiral species of Zn(II) and Cu(II) described in this article are the first examples of trigonal-bipyramidal metal complexes with predetermined absolute configuration containing topologically linear ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号