首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
化石燃料的燃烧和其他人类活动排放了大量的CO2气体,引发了诸多环境问题。电催化CO2还原反应(CO2RR)可以储存间歇可再生能源,实现人为闭合碳循环,被认为是获得高附加值化学品和燃料的有效途径。电催化CO2RR涉及多个电子-质子转移步骤,其中*CO通常被认为是关键中间体。铜由于对*CO具有合适的吸附能,已被广泛证明是唯一能够有效地将CO2还原为碳氢化合物和含氧化合物的金属催化剂。然而,纯Cu稳定性差、产品选择性低、过电位高,阻碍了工业级多碳产品的生产。构筑Cu基串联催化剂是提高CO2RR性能的一种有前途的策略。本文首先介绍电催化CO2RR的反应路线和串联机理。然后,系统地总结铜基串联催化剂对电催化CO2RR的最新研究进展。最后,提出合理设计和可控合成新型电催化CO2RR串联催化剂面临的挑战和机遇。  相似文献   

2.
实现碳氮循环是人类社会发展的迫切要求,也是催化领域的热门研究课题。在可再生能源的推动下,电催化技术引起了人们的广泛关注,且可以通过改变反应电压获得不同的目标产品。基于此,电催化技术被认为是缓解当前能源危机和环境问题的有效策略,对实现碳中和具有重要意义。其中,电催化CO2还原反应(CO2RR)和N2还原反应(N2RR)是一种有前途的小分子转化策略。然而,CO2和N2均为线性分子,其中C=O和N≡N键的高解离能导致了它们高的化学惰性。此外,最高占据分子轨道(HOMO)和最低未占分子轨道(LUMO)之间的巨大能量间隙使它们具有高的化学稳定性;且CO2和N2的低质子亲和力使它们难以被直接质子化。另一方面,由于CO2RR和N2RR与析氢反应(HER)具有相近的氧化还原电位,造成其与HER之间存在竞争性关系,这也是致使催化剂在CO2RR和N2RR转化效率低的重要影响因素。因此,CO2RR和N2RR仍然面临着过电位高及法拉第效率低等问题。为了克服这些瓶颈,人们为提升CO2RR和N2RR电催化剂性能做出了很多努力。众所周知,电催化过程发生在催化剂表面,主要涉及质量传递和电子转移等过程。由此可见,催化剂的性能与其质量和电子传输能力密切相关,而调控催化剂表面结构可以优化活性点的质量和电子转移行为。电催化剂的缺陷和界面工程可通过表面原子工程来实现电子结构调控,对于提高气体吸附能力、抑制HER、富集气体及稳定中间产物等具有重要意义。到目前为止,所报道的各种缺陷和复合电催化剂在提高CO2RR和N2RR催化性能等方面均表现出巨大的潜力。在此,我们综述了CO2RR和N2RR中催化剂缺陷工程及界面工程的最新进展;首先讨论了四种不同的缺陷(空位、高指数晶面、晶格应变和晶格无序)对CO2RR和N2RR性能的影响;然后,总结了界面工程在聚合物-无机复合材料催化剂中的重要作用,并给出了典型实例;最后,展望了原子级电催化剂工程的发展前景,提出了开发和设计高效CO2RR和N2RR电催化剂的未来发展方向。  相似文献   

3.
双原子位点M-N-C催化剂是催化CO2还原反应(CO2RR)性能最佳的催化剂之一. 然而, 目前的研究主要集中于M-N-C活性中心原子类型的调控, 低估了活性位点的配位模式及分布对其催化性能的影响. 本文选取典型的双原子位点M-N-C催化剂(NiFe-N-C)为研究对象, 采用密度泛函理论方法探究了9种活性位点具有不同配位环境的NiFe-N-C催化剂电催化CO2RR的反应机理. 结果表明, 随着金属原子配位数、 双原子位点间距离的增加, M-N-C催化剂的稳定性、 催化CO2还原至CO的活性及抑制氢析出反应的选择性均呈现先升高后下降的趋势. 其中, 金属原子四配位且对称分布的NiFe-N-C-model 3催化剂, 因其双原子位点的强相互作用表现出最优的催化性能.  相似文献   

4.
温和条件下将CO2电催化还原(CO2RR)为高能量密度燃料和高附加值碳产品是降低大气中CO2浓度、储存间歇性可再生能源、实现碳中和的重要途径之一。设计和开发对电催化CO2RR兼具高活性、高选择性、高稳定性、且对析氢反应(HER)具有显著抑制作用的高性能廉价催化剂是CO2RR研究的关键。单原子催化剂(SACs)由于其独特的电子结构和几何结构对许多重要化学反应(如CO氧化反应、加氢反应、析氧反应、氧还原反应、析氢反应等)显示出优异的催化活性而广受关注。近年来,N掺杂多孔碳载体过渡金属单原子催化材料(M-N-C)显示出对电化学二氧化碳还原的广阔前景、并有望成为在水相电解质中还原CO2的贵金属(Au,Ag)催化剂的替代品。本文从单原子催化材料M-N-C的制备、影响电催化性能的因素及MNx活性基团三个方向介绍了单原子催化剂M-N-C电催化CO2RR的研究现状和进展。最后,就目前该方向研究中尚待解决的问题进行了总结、并对下一步的研究进行了展望。  相似文献   

5.
利用电催化技术和阴极区的还原反应将CO2转化为高能化学品是解决温室效应和实现人工碳循环的有效途径。与其它金属催化剂相比,Cu基催化剂因其能生成多碳产物而备受关注,但其缺点是对产物的选择性差。因此,近年来,研究者致力于探究Cu基催化剂在反应过程中的C-C偶联机制及影响因素,并对Cu基催化剂进行针对性的结构设计和实验合成。本文总结了Cu基电极上电催化CO2还原反应(CO2RR)的基本原理,分析了影响电催化CO2RR的关键因素(电催化反应器、pH值、压力和温度、CO2的流速与浓度),综述了针对Cu基催化剂改性的相关策略(合金化、纳米结构改性、杂原子掺杂、亲/疏水性、单原子催化剂)的研究进展,最后,展望了电催化CO2RR的Cu基催化剂领域的机遇与挑战,以期为今后开展相关研究提供有益参考。  相似文献   

6.
温和条件下以CO2为原料制备高附加值化学品, 是CO2资源化利用的重要方法, 在众多CO2转化方法中, 电催化CO2还原(e-CO2RR)具有绿色、 清洁及条件可控等优势, 可以促进碳中和, 实现可持续发展. 然而, 由于其缓慢的动力学和较低催化剂活性, CO2电催化还原仍然存在低选择性, 低电流密度的问题. 单原子催化剂具有最大的原子利用率和明确定义的催化活性位点, 同时因其良好的配位结构和独特的电子结构极大地促进了CO2电催化还原的动力学过程, 是CO2电还原领域极具发展潜力的催化材料. 本文讨论了过渡金属和主族金属基单原子催化剂用于电催化CO2还原的研究进展, 系统总结了杂原子配位, 双/单原子位点, 金属-载体相互作用, 空间限域和分子桥联等策略调控单原子的微环境进而优化催化的性能, 揭示了单原子催化剂在 e-CO2RR领域内的突出优势和广阔的应用前景. 最后, 分析了单原子催化剂在CO2电催化转化过程中面临的挑战, 并对其未来进行了展望.  相似文献   

7.
电催化二氧化碳还原反应(CO2RR)可以将二氧化碳转化为具有高经济价值的碳氢化合物,被认为是实现碳中和并缓解能源危机的一种有潜力的技术.铜(Cu)作为一种最有应用前景的非贵金属催化剂之一,表现出较高的催化CO2RR转化为多碳产物(C2+)的活性.然而,电催化CO2还原成C2+产物涉及一个动力学过程缓慢的C-C偶联反应,这导致C2+产物的选择性较低,电流密度低,阻碍了其在工业电解槽中的实际应用.同时,CO2RR产物的选择性不仅取决于热力学速率决定步骤,还取决于传质控制动力学.CO2RR发生在固-气-液三相反应界面,气-液的平衡扩散可以有效抑制析氢竞争反应,进而提高CO2RR的反应效率.本文设计合成了一种富晶界的Cu纳米带催化剂,并构建了气-液平衡扩散的电极结构,用于高效电催化二氧化碳还原制备乙烯(C2H4).以一种碱式碳酸铜(Cu2  相似文献   

8.
众所周知,石墨烯片(GS)和碳纳米管是能源转化和储存应用中有效的催化剂. 然而,过渡金属基氮(N)掺杂的体系中经常形成GS和碳纳米管的复合物,使得该体系内的构效关系研究变得十分困难. 为了可控制备出含有理想物种的催化剂,作者尝试通过利用氮对碳纳米管生长的效应调节生成产物的形貌. 本文中,作者采用一步法制备了一系列Fe-N共掺杂的GS、GS/竹节碳纳米管(BCNTs)复合物及BCNTs催化剂. 为了评估碳形貌对催化剂性能的影响,作者采用氧气还原反应(ORR)及二氧化碳还原反应(CO2RR)作为模型反应. 电化学测试结果表明,所有的样品当中仅含BCNTs的催化剂表现出最好的ORR活性(起始电位Eonset = 1.02 VRHE)及CO2RR活性(CO生成法拉第效率FECO = 91.1%,-0.6 VRHE). 进一步的研究表明,优异的活性与独特的BCNTs中存在的缺陷、较大的比表面积、高含量的吡啶N及FeNx相关. 该工作加深了作者对形貌相关的ORR及CO2RR过程的认识和理解.  相似文献   

9.
自工业革命以来, CO2的过量排放导致了环境污染和气候变化,对人类可持续发展造成了极大的威胁.由可再生电力驱动的电催化CO2还原反应(CO2RR)技术可在较温和的条件下将CO2转化为高附加价值的燃料和化学品,因而是一种有效的CO2转换和利用的方法.尽管电催化CO2RR已经取得了较大的研究进展,但其工业化应用依旧面临着许多挑战:CO2RR的反应路径涉及多步电子-质子转移,其产物组分较复杂(包括C1到C3的产物),并且反应过程伴随着析氢反应(HER)副反应发生.此外,不同电催化剂的使用以及实验操作条件均对CO2RR影响较大,导致目前CO2RR催化剂性能尚不够理想,因而难以获得实际应用.为进一步开发性能良好的电催化CO2RR体系,以及认识实际反应过程中催化体系真正的活性位点,理解电催化剂表面结构演变机制至关重要.本文综述了CO  相似文献   

10.
将大气中的二氧化碳(CO2)转化为燃料或高附加值化学品是降低大气中CO2含量、 减缓温室效应的有效途径之一. 光催化CO2化学转化条件温和, 能耗低, 在CO2转化中占有重要地位. 金属-有机框架(MOF)基材料由于具有比表面积大、 光电性质优良和可调节性强等特点, 是CO2光催化转化的常用催化剂之一. 本文综合评述了近两年MOF基材料在光催化CO2还原反应、 CO2环加成反应和CO2羧基化反应中的应用, 阐释了MOF基材料在CO2光催化转化中的优势和局限性, 并展望了其未来发展.  相似文献   

11.
为了推动清洁能源-燃料电池的广泛应用, 迫切需要研发成本低、 原料来源广泛的过渡金属基高效氧还原反应(ORR)催化材料, 来替代目前使用的贵金属铂基催化材料. 本文以铁和钴等非贵金属离子作为催化材料的主要活性位点, 通过金属-羧基/羟基螯合键原位预锚定在具有三维(3D)孔道结构、 富含羧基和羟基以及极易在水溶液中形成凝胶网络的海洋生物质材料海藻酸钠上, 经冷冻干燥得到气凝胶; 然后通过高温碳化, 得到活性位点均匀分布在具有多级孔结构的碳骨架中的高活性、 高稳定的Co/Zn/Fe/N@bio-C-2氧还原催化剂材料, 该催化剂包含2种不同的铁基活性材料(Fe2O3和Fe)以及2种不同的钴基活性材料(CoO和Co).利用硝酸锌作为活化剂来改善催化材料的孔道结构, 使制备碳材料的总面积从149.3 m2/g增加到325.3 m2/g. 通过一系列对比实验发现, Fe/Co双活性位点与合适比表面积的协同作用使得Co/Zn/Fe/N@bio-C-2获得了最佳的ORR催化活性.其在0.1 mol/L KOH溶液中起始电位达到0.99 V, 半波电位可达0.87 V.  相似文献   

12.
CO_2是最常见的化合物,作为潜在的碳一资源,可用于制备多种高附加值的化学品,如一氧化碳、甲烷、甲醇、甲酸等。传统的热催化转化CO_2方法能耗高,反应条件苛刻。因此,如何在温和条件下高效地将CO_2转化成高附加值的化学品,一直以来是催化领域的研究热点和难点之一。光催化技术反应条件温和、绿色环保。然而,纯光催化反应普遍存在太阳能利用效率有限,光生载流子分离效率低等问题。针对上述问题,在光催化的基础上引入电催化,可以提高载流子的分离效率,在较低的过电位下,实现多电子、质子向CO_2转移,从而提高催化反应效率。总之,光电催化技术可以结合光催化和电催化的优势,提高CO_2催化还原反应效率,为清洁、绿色利用CO_2提供了一种新方法。本文依据光电催化CO_2还原反应基本过程,从光吸收、载流子分离和界面反应等三个角度综述了光电催化反应的基本强化策略,并对未来可能的研究方向进行了展望。  相似文献   

13.
单原子催化剂(SAC)是由互相隔离分散的原子级活性位点锚定在基底上而形成的一类新兴催化剂材料, 其具有最大化的原子利用率、 可调控的独特电子结构, 因而在热催化、 光催化及电催化等方面展现出良好的应用前景. 通过SAC的热/光/电催化CO2转化反应(CCR)能将温室气体CO2转化为燃料或具有附加值的化学品, 为解决严重的全球变暖和能源短缺问题提供了一种有效策略. 本文总结了近年来SAC在CO2转化领域的研究进展, 讨论了其合成、 调控及催化各类CO2转化反应的优缺点, 并对其未来的发展进行了展望.  相似文献   

14.
高效氧催化反应中的金属有机骨架材料(英文)   总被引:1,自引:0,他引:1  
氧电催化反应包括氧气还原反应(ORR)和氧气析出反应(OER).作为核心电极反应,这两个反应对诸多能源存储与转换技术(比如燃料电池、金属空气电池以及全水分解制氢等)的能量效率起决定性作用.然而,ORR和OER涉及多个反应步骤、多个电子转移过程以及多相界面传质过程.这些复杂的过程较大程度上限制了ORR和OER的反应速率.从理论和实践两个方面来看,ORR和OER都需要高效电催化剂的参与来促进其反应速率,从而能够最终提高上述能源存储与转换技术的能量转换或利用效率.目前,以Pt,Pd,Ir,Ru为代表的贵金属基电催化剂具有十分突出的电催化性能.但是,过高的成本和过低的储量始终制约着贵金属基电催化剂在催化ORR和OER反应方面,乃至在能源存储与转换技术领域的规模化应用.因而,开发高效非贵金属基氧电催化剂成为近年来能源存储与转换领域的研究重点之一.在众多已经报道的非贵金属基氧电催化剂中,金属有机骨架材料(MOFs)备受瞩目.MOFs是一类由有机配体和金属节点通过配位键自组装而成的晶态多孔材料.它们具备超高比表面积、超高孔隙率以及规则性纳米孔道.相比较其他传统的多孔材料(比如活性炭、分子筛、介孔炭、介孔氧化硅等),MOFs最主要的优势在于它们的结构和功能可以依据需求通过选择合适的有机配体和金属节点进行便利地设计,或通过后处理进行必要的改性和调节.基于独特的多孔特性以及结构与功能的可设计、可调节性,MOFs在气体分离与存储、异相催化、化学传感、药物输送、环境保护以及能源存储与转化等领域都具有潜在的应用价值.因而,近年来,MOFs备受基础研究领域和工业界的青睐.针对MOFs开展的基础研究和应用开发逐渐成为诸多领域的研究焦点.也正由于MOFs具有的上述优异特性,尤其是结构与功能的可设计、可调节性,使得设计制备基于单纯MOFs以及MOFs衍生材料成为开发高效非贵金属基氧电催化剂的新途径.本综述首先论述了基于单纯MOFs的氧电催化剂(包括纯MOFs、活性物种修饰的MOFs以及与导电材料构成的复合MOFs)的合成以及它们在ORR或OER催化反应中应用的研究进展.在第二部分论述中,本综述主要针对MOFs衍生的各类氧电催化剂(包括无机微米-纳米结构/多孔碳复合材料、纯多孔碳材料、纯无机微米-纳米结构材料以及单原子型电催化材料)的研究进展进行了简要介绍和讨论.最后,本综述对MOFs基氧电催化剂目前存在的挑战进行了简要分析;同时,也对这类氧电催化剂的通用设计准则以及未来发展方向进行了展望.尽管存在诸多挑战,MOFs始终被认为是极好的"平台"材料.充分利用它们将有利于开发高效且实用的非贵金属基氧电催化剂.  相似文献   

15.
Single-atom catalysis is the “hot spot” in the field of catalysis due to the special geometries, electronic states, and their unique catalytic performance. Single-atom catalysts(SACs), isolated metal atoms dispersed on the support, show the highest atom efficiency, cutting down the potential cost in the industrial process. Consequently, this “homo-hetero” catalyst could be a promising candidate for the next-generation catalysts. The applications for the SACs are widely reported, like gas-solid reactions, organic reactions, and electro-catalysis. In this mini- review, we will focus on the recent work of SACs on electro-catalysis, including hydrogen evolution reaction(HER), oxygen reduction reaction(ORR), oxygen evolution reaction(OER), CO2 reduction reaction(CO2 RR), and nitrogen reduction reaction(NRR).  相似文献   

16.
商林杰  刘江  兰亚乾 《应用化学》2022,39(4):559-584
Covalent organic frameworks (COFs)are a class of emerging materials connected by covalent bonds,which have high thermal/chemical stability (except boric acid COFs),permanent porosity,large specific surface area and good crystallinity. In addition,the structure of the monomer unit in COFs is adjustable and can coordinate with many transition metal ions to provide catalytic active sites. These advantages make COFs helpful to catalyze various reactions. Among them,COFs have an excellent catalytic effect on the CO2 reduction reaction(CO2 RR). This is mainly because the adjustable pore structure of COFs allows them to adsorb a large amount of CO2 and the π-π stacking structure in COFs can promote charge transfer, which can greatly improve the efficiency of CO2 reduction. COFs can be used as photo/ electrocatalysts to efficiently reduce CO2 to CO,CH4 ,HCOOH and other products. This review discusses the important achievements of CO2 RR catalyzed by COFs, including photo/electrocatalytic CO2 RR and photoelectric coupling CO2 RR. In addition,the future development of COFs as CO2 RR catalysts is also prospected. © 2022, Science Press (China). All rights reserved.  相似文献   

17.
The oxygen reduction reaction (ORR) is one of the most important reactions in life processes and energy conversion systems. To alleviate global warming and the energy crisis, the development of high-performance electrocatalysts for the ORR for application in energy conversion and storage devices such as metal–air batteries and fuel cells is highly desirable. Inspired by the biological oxygen activation/reduction process associated with heme- and multicopper-containing metalloenzymes, iron and copper-based transition-metal complexes have been extensively explored as ORR electrocatalysts. Herein, an outline into recent progress on non-precious-metal electrocatalysts for the ORR is provided; these electrocatalysts do not require pyrolysis treatment, which is regarded as desirable from the viewpoint of bioinspired molecular catalyst design, focusing on iron/cobalt macrocycles (porphyrins, phthalocyanines, and corroles) and copper complexes in which the ORR activity is tuned by ligand variation/substitution, the method of catalyst immobilization, and the underlying supporting materials. Current challenges and exciting imminent developments in bioinspired ORR electrocatalysts are summarized and proposed.  相似文献   

18.
Electrospinning with a simple and controllable process has extremely received considerable concerns by virtue of the fabrication and development of nanofibers. Moreover, nanofibers are playing an increasing impact on energy conversion and storage devices, especially for fuel cells based on oxygen reduction reaction(ORR), in view of the rich porosity, large surface area, excellent mass transportation and simply tunable composition, as well as good mechanical strength. In this review, we mainly introduce the primary principle of electrospinning technique, electrochemical reaction mechanism of ORR and synthetic strategies, and summarize the recent advances of unique non-noble-metal nanofibers on the basis of metal-organic framework(MOF) derivatives, single-atom catalysts(SACs) and transition metal oxides. More importantly, we emphasize on the influences of the components, morphology and architecture of advanced electrospun catalysts on their correspon-ding electrochemical performances towards ORR. Finally, the remaining puzzles and perspectives for further development of the electrospinning nanofibers involving electrocatalysis are presented. It is envisioned that this review would offer an important direction in designing novel electrocatalysts based on electrospinning nanofibrous structures and developing their potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号