首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
T-piece and concentric counter-flow mixing systems are compared in continuous flow supercritical solvothermal synthesis of TiO2 at identical system parameters. The phase pure anatase nanoparticle products were characterized with powder X-ray diffraction (PXRD), transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS), and the particle size, size distribution and absolute crystallinity mapped as a function of temperature, precursor concentration, flow rate and pressure for the two different continuous flow reactors. The particles synthesized with the T-piece geometry are smaller with a narrower size distribution, possibly indicating a more effective mixing, than particles synthesized at the same conditions with concentric counter-flow geometry. In general, an increased synthesis temperature leads to an increase in absolute crystallinity. For the particles synthesized with the concentric reactor geometry crossing of the critical point of the solvent causes a decrease in the particle size and size distribution, and conditions just above the critical temperature are demonstrated to be optimal for continuous solvothermal synthesis of anatase.  相似文献   

2.
Modeling of a counterflow plasma reactor   总被引:2,自引:0,他引:2  
Modeling of a counterflow plasma reactor is presented, using liquid injection for the synthesis of fine particles. An experimental reactor has been developed in this laboratory, and feasibility has been demonstrated for synthesizing advanced ceramic powders. The flow field calculations show two major recirculating regions which are of importance for increasing the particles' residence time inside of the reactor. In addition, the temperature within these recirculation zones remains relatively uniform. For simulation, water droplet trajectories have been calculated for droplets produced by an injection probe. It is shown that the droplets in a size range below 50 m in diameter will follow the streamlines and evaporate completely within a short traveling distance. This finding suggests that this reactor configuration provides a favorable environment for the synthesis of fine particles using liquid precursors.  相似文献   

3.
以碳化硼为例,研究了悬浮液雾化进样中的粒子在传输和蒸发过程中的行为,并对分析结果出现负偏离的原因进行了详细探讨.对比悬浮液颗粒的原始粒径分布和经过传输过程后的粒径分布,获得到达等离子体的颗粒粒径上限小于10 Am.样品中存在的部分超大粒径的颗粒(d>>10 μm)会严重影响可传输区域颗粒(d<10 μm)的质量运输效率...  相似文献   

4.
Porous zirconia particles were synthesized through a low-temperature hydrothermal synthesis process. Under hydrothermal conditions, water can control the direction of crystal growth, morphology, particle size, and size distribution because thermodynamics and transport properties can be controlled by pressure and temperature. In a batch process, the hydrothermal synthesis was conducted at 200–300 °C and 30 MPa with an SUS-304 tube as the reactor. At the same reaction pressure, experiments were also performed for a flow process with temperatures of 180–200 °C. The synthesized products were calcined and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results showed that the macroporous zirconia particles that were formed had pore diameters around 419 nm. The XRD pattern indicated that the products were composed of zirconium oxide particles with monoclinic, tetragonal, and cubic structures.  相似文献   

5.
Effects of monomer (AM) concentration, monomer/crosslinker (AM/MBAM) ratio and salt concentration on the thermal behavior of precursor gel and the properties of BeO nanopowder synthesized by polyacrylamide gel method were investigated. The decomposition process of precursor gel was also studied. The decomposition process of precursor gel is that, first, the extraction of free and crystallized water, and then the thermal degradation of polymeric network under temperature higher than 600 °C, final, the decomposition of nanoscale beryllium sulfate to BeO nanopowder. As the monomer concentration increases, the calcination temperature of precursor gel decreases due to more compact network structure of gel and thus smaller size of salt in nanocaves in gel. The average particle size of nanopowder reduces correspondingly. The AM/MBAM ratio also has significant effect on the thermal behavior of precursor gel and the average particle size of product. When the ratio of AM to MBAM is 6, the calcination temperature of precursor gel is the lowest, the average particle size of powders is the smallest, because the network structures of gel is the tightest and thus the sizes of salts in precursor gels are the smallest. As the AM/MBAM ratio deviates from this value, the network structures of gel becomes looser and thus the size of salt in precursor gel becomes larger, so the calcination temperature increases and the average particle size of powders becomes larger certainly. For the same reason, both the calcination temperature and the average particle size of powders increases with increasing the salt concentration. The synthesis conditions have no effect on the particle size distribution of the final product due to the natural random distribution of porosity in gel.  相似文献   

6.
Here we report on the synthesis of ultrasmall gamma-Fe2O3 nanoparticles (5 nm) presenting a very narrow particle size distribution and an exceptionally high saturation magnetization. The synthesis has been carried out by decomposition of an iron organometallic precursor in an organic medium. The particles were subsequently stabilized in an aqueous solution at physiological pH, and the colloidal dispersions have been thoroughly characterized by complementary techniques. Particular attention has been given to the assessment of the mean particle size by transmission electron microscopy, X-ray diffraction, dynamic light scattering, magnetic, and relaxometric measurements. The good agreement found between the different techniques points to a very narrow particle size distribution. Regarding the magnetic properties, the particles are superparamagnetic at room temperature and present an unusually high saturation magnetization value. In addition, we describe the potential of these particles as specific positive contrast agents for magnetic resonance molecular imaging.  相似文献   

7.
We describe herein the synthesis of metallic copper nanoparticles in the presence of poly(vinylpyrrolidone), employed as a protecting agent, via a polyol method in ambient atmosphere. The obtained copper particles were confirmed by XRD to be crystalline copper with a face-centered cubic (fcc) structure. We observed monodisperse spherical copper nanoparticles with a diameter range 45+/-8 nm. The particle size and its distribution are controlled by varying the synthesis parameters such as the reducing agent concentration, reaction temperature, and precursor injection rate. The precursor injection rate plays an important role in controlling the size of the copper nanoparticles. On the basis of XPS and HRTEM results, we demonstrate that the surface of the copper is surrounded by amorphous CuO and that poly(vinylpyrrolidone) is chemisorbed on the copper surface.  相似文献   

8.
TiO2 *nH2 O凝胶预处理对水热合成SrTiO3 粉的影响   总被引:2,自引:0,他引:2  
以TiCl4为钛源, 首先制备TiO2 * nH2O凝胶, 然后在80℃的水热条件下制备了SrTiO3粉.利用X射线衍射(XRD)、透射电子显微镜(TEM)和红外光谱(FTIR)研究了TiO2 * nH2O凝胶水洗方式、阴离子(Cl-和NO3-)以及TiO2 * nH2O热处理对SrTiO3粉性能的影响.结果表明, 水洗和热处理都能使TiO2 * nH2O凝胶产生晶化; TiO2 * nH2O的晶化程度对产物SrTiO3颗粒的粒度和粒度分布有很大影响,以非晶质TiO2 * nH2O为钛源制备的SrTiO3颗粒粒度大且粒度分布宽.以结晶TiO2 * nH2O为钛源制备的SrTiO3颗粒粒度小且粒度分布窄,而且可以得到纳米颗粒.水热反应液相中存在Cl-或NO3-能使产物SrTiO3颗粒粒度稍有增大.综合以上结果, TiO2 * nH2O凝胶水洗对产物颗粒的影响主要是由于使凝胶产生了晶化,而由阴离子脱除产生的影响很小.因此,在不考虑阴离子对其它工程化影响(如设备腐蚀等)的前提下,可采用热处理代替水洗.  相似文献   

9.
A method is presented to prepare nanocrystalline alpha-Zn(2)SiO(4) with the smallest crystal size reported so far for this system. Our approach combines the advantages of organometallic single-source precursor routes with aerosol processing techniques. The chemical design of the precursor enables the preferential formation of pure zinc silicates. Since gas-phase synthesis reduces intermolecular processes, and keeps the particles small, zinc silicate was synthesized from the volatile organometallic precursor [[MeZnOSiMe(3)](4)], possessing a Zn-methyl- and O-silyl-substituted Zn(4)O(4)-heterocubane framework (cubane), under oxidizing conditions, using the chemical vapor synthesis (CVS) method. The products obtained under different process conditions and their structural evolution after sintering were investigated by using various analytical techniques (powder X-ray diffraction, transmission electron microscopy, EDX analysis, solid-state NMR, IR, Raman, and UV/Vis spectroscopy). The deposited aerosol obtained first (processing temperature 750 degrees C) was amorphous, and contained agglomerates with primary particles of 12 nm in size. These primary particles can be described by a [Zn-O-Si] phase without long-range order. The deposit obtained at 900 degrees C contained particles with embedded nanocrystallites (3-5 nm) of beta-Zn(2)SiO(4), Zn(1.7)SiO(4), and ZnO in an amorphous matrix. On further ageing, the as-deposited particles obtained at 900 degrees C form alpha-Zn(2)SiO(4) imbedded in amorphous SiO(2). The crystallite sizes and primary particle sizes in the formed alpha-Zn(2)SiO(4) were found to be below approximately 50 nm and mainly spherical in morphology. A gas-phase mechanism for the particle formation is proposed. In addition, the solid-state reactions of the same precursor were studied in detail to investigate the fundamental differences between a gas-phase and a solid-state synthesis route.  相似文献   

10.
Nanosized TiO(2) photocatalysts were synthesized using a chemical vapor condensation method under a range of synthesis conditions (precursor vapor concentration and residence time in a tubular electric furnace). X-ray diffraction showed that the prepared TiO(2) powders consisted mainly of anatase (>94%) with a small amount of rutile. The mean particle diameter from the Brunauer-Emmett-Teller surface area and transmission electron microscopy measurements ranged from 9.4 to 16.6 nm. The specific surface area (92.5-163.5 m(2) g(-1)) of the prepared TiO(2) powders was found to be dependent on the synthesis conditions. The content of hydroxyl groups on the surface of the prepared TiO(2) sample was higher than those on commercial TiO(2), resulting in increased photocatalytic oxidation. The photocatalytic activity of the TiO(2) samples prepared in a methylene blue solution was strongly dependent on the crystallinity and specific surface area, which were affected by the TTIP vapor concentration and residence time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号