首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Sulfur nuclear magnetic resonance (NMR) chemical shieldings have been determined at the correlation-including density functional theory scaled B3LYP/6-311+G(nd,p)//B3LYP/6-311+G(d,p) and modified MP2/6-311+G(nd,p) estimated infinite order Møller-Plesset levels with n = 2 for sulfur. The calculations span the range of sulfur shieldings and show agreement with experiment of about 3% of the shielding range. The atoms-in-molecules delocalization index and a covalent bond order from specific localized orbitals in the DFT approach are used to characterize sulfur's bonding and to relate it, where possible, to the calculated shieldings. © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:216–224, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20000  相似文献   

2.
The B3LYP/6-31+G(d) molecular geometry optimized structures of 17 five-membered heterocycles were employed together with the gauge including atomic orbitals (GIAO) density functional theory (DFT) method at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p) and B3LYP/6-311+G(2d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants. The method of geometry optimization for pyrrole (1), N-methylpyrrole (2) and thiophene (7) using the larger 6-311++G(d,p) basis sets at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,p) and B3LYP/cc-pVTZ levels of theory gave little difference between calculated and experimental values of coupling constants. In general, the (1)H and 13C chemical shifts for all compounds are in good agreement with theoretical calculations using the smaller 6-31 basis set. The values of nJHH(n=3, 4, 5) and rmnJ(CH)(n=1, 2, 3, 4) were predicted well using the larger 6-31+G(d,p) and 6-311++G(d,p) basis sets and at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p) levels of theory. The computed atomic charges [Mülliken; Natural Bond Orbital Analysis (NBO); Merz-Kollman (MK); CHELP and CHELPG] for the B3LYP/6-311++G(d,p) geometry optimized structures of 1-17 were used to explore correlations with the experimental proton and carbon chemical shifts.  相似文献   

3.
[reaction: see text] Neutral homoaromaticity has been evaluated in heterocyclic systems related to the bicyclo[3.2.1]octane skeleton with replacement of CH(2) at C-2 in bicyclo[3.2.1]octa-3,6-diene with X = BH, AlH, Be, Mg, O, S, PH, NH (12); replacement of CH at C-3 in bicyclo[3.2.1]octa-3,6-dien-2-yl anion with PH, S, NH, O (13); and replacement at C-2 and C-3 with N and O (14). Stabilization energies (SE) are evaluated using density functional theory and homodesmotic equations at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d) level for series 12-14. Stabilization energies are compared with diamagnetic susceptibility exaltations, Lambda, CSGT-B3LYP/6-31G(d)//B3LYP/6-31G(d), and nucleus-independent chemical shifts (NICS), GIAO-B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d). Analysis of frontier orbitals and geometries, B3LYP/6-31G(d)//B3LYP/6-31G(d), and proton affinities of 2-azabicyclo[3.2.1]octa-3,6-diene, pyrrole, and related model systems, B3LYP/6-311+G(2d,2p)//B3LYP/6-31G(d), provide complementary evidence supporting the division of the substrates evaluated into antihomoaromatic (12, X = BH, AlH, and Be), nonhomoaromatic (12, X = O, S, NH, PH), and homoaromatic (13, X = S, PH, NH, O and 14 X = ON), with 12 (X = Mg) appearing as transitional between anti- and nonhomoaromatic.  相似文献   

4.
33S NMR chemical shifts were calculated by the scaled DFT and EMPI approaches for the fluoride, chloride and bromide of trimethylsulfonium ion (1) and S-methyltetrahydrothiophenium ion (2), in addition to the free cations. Experimental values were obtained for the iodides of 1 (delta +48, CS2 = 0 ppm) and 2 (delta +95), and were found to agree with the calculated values well within the standard deviation of 35 ppm (3.5% of the shielding range) established in earlier work for a great variety of sulfur compounds. An earlier literature value of delta +750 for the iodide of 2 is therefore to be replaced. Calculations provide a shift of delta +68 for S-methylthianium ion with equatorial methyl, indicating that the reported value of delta +670 for the iodide is also incorrect.  相似文献   

5.
The tautomeric properties of acetoacetamide, CH3C(O)CH2C(O)NH2, have been investigated by gas electron diffraction (GED) and quantum chemical calculations (B3LYP and MP2 approximations with 6-31G(d,p) and 6-311++G(3df,pd) basis sets). GED results in a mixture of 63(7)% enol tautomer and 37(7)% diketo form at 74(5) degrees C. Only one enol form with the O-H bond adjacent to the methyl group (CH3C(OH)=CHC(O)NH2) and only one diketo conformer (with dihedral angles tau(O=C(CH3)-C-C) = 31.7(7.5) degrees and tau(O=C(NH2)-C(H2)-C(O)) = 130.9(4.5) degrees ) are present. The calculated tautomeric composition varies in a wide range depending on the quantum chemical method and basis set. Only the B3LYP method with small basis sets reproduces the experimental composition correctly.  相似文献   

6.
The MPW1PW91/6-311+G(2d,p) and MP2/6-311+G(2d,p) GIAO nuclear shieldings for a series of monosubstituted acetylenes have been calculated using the MP2/6-311G(2d,p) geometries. Axially symmetric substituents such as fluorine may lead to large changes in the isotropic shielding but have little effect on the tensor component (zz) about the C[triple bond]C bond axis. On the other hand, substituents such as vinyl and aldehyde groups lead to essentially no difference in the isotropic shielding but are calculated to give a large zz paramagnetic shift to the terminal carbon of the acetylene group, without having much effect on the inner carbon. The tensor components of the chemical shifts for trimethylsilylacetylene, methoxyacetylene, and propiolaldehyde have been measured and are in reasonable agreement with the calculations. The downfield shift at the terminal carbon of propiolaldehyde along with a small upfield shift at the adjacent carbon has been found to result from the coupling of the in-plane pi MO of the acetylene with the pi* orbital that has a node near the central carbon. The tensor components for acetonitrile also have been measured, and the shielding of cyano and acetylenic carbons are compared.  相似文献   

7.
The S-H bond dissociation enthalpies [BDE(S-H)] of a set of 5-X- and 6-X-3-pyridinethiols (X = F, Cl, CH3, OCH3, NH2, N(CH3)2, CF3, CN, and NO2) have been computed using the density functional theory based (RO)B3LYP procedure with 6-311++G(2df,2p) basis set. The effects of substituents on the BDE(S-H), proton affinity of the pyridinethiol anion [PA(S-)] and ionization energy (IE) are analyzed and their correlations with Hammett's substituent constants are examined. Subsequently, a series of 6-substituted 3-pyridinethiols have been explored to find out their antioxidant potentials. Finally, a number of 3-pyridinethiol based compounds are theoretically proposed as novel antioxidants.  相似文献   

8.
采用密度泛函方法(B3LYP)在6-311+G(d,p)基组水平上研究了CH3CH2S自由基H迁移异构化以及裂解反应的微观动力学机理. 在QCISD(T)/6-311++G(d,p)//B3LYP/6-311+G(d,p)+ZPE水平上进行了单点能校正. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了在200~2000 K温度区间内的速率常数kTST和kCVT, 同时获得了经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT. 研究结果表明, CH3CH2S自由基1,2-H迁移、1,3-H迁移、C—C键断裂和β-C—H键断裂反应的势垒ΔE≠分别为149.74, 144.34, 168.79和198.29 kJ/mol. 当温度低于800 K时, 主要发生1,2-H迁移反应, 高于1800 K时, 主要表现为C—C键断裂反应, 在1300—1800 K范围内, 1,3-H迁移反应是优势通道, 在计算的整个温度段内, β-C—H键断裂反应可以忽略.  相似文献   

9.
The 1H, 13C and 1H, 13C COSY NMR spectra of salicylohydroxamic acid (sha) were measured in DMSO-d6 solution. The B3LYP GIAO method with the 6-311++G(d,p) basis set was chosen to reproduce the experimental spectra. All possible zusammen and entgegen conformers of monomeric sha were computed. After geometry optimisation (B3LYP/6-311++G(d,p)) only nine independent models of the molecule were shown to be stable. Additionally, the NMR chemical shifts of the Onsager model of the most stable monomer were calculated. The computed chemical shifts for the labile protons for all aforementioned geometries meaningfully underestimated experimental results suggesting the existence of the H-bonded structure of sha in DMSO solution. The most probable two dimeric structures along with two solvent-bounded aggregates were subsequently calculated at the same level of theory. The best agreement was obtained for sha H-bonded with two DMSO molecules (confirmed by the absence of concentration effect). The relative error not exceeding 10 and 4% for chemical shifts in 1H and 13C NMR spectra of sha–(DMSO)2, respectively, showed that the applied method with the B3LYP/6-311++G(d,p) basis set was efficient to predict the NMR shifts of a compound with strong H-bonds. Thus, this allows to assign properly NMR resonances to specific structure formed in DMSO solution.  相似文献   

10.
The CH3S* + O2 reaction system is considered an important process in atmospheric chemistry and in combustion as a pathway for the exothermic conversion of methane-thiyl radical, CH3S*. Several density functional and ab initio computational methods are used in this study to determine thermochemical parameters, reaction paths, and kinetic barriers in the CH3S* + O2 reaction system. The data are also used to evaluate feasibility of the DFT methods for higher molecular weight oxy-sulfur hydrocarbons, where sulfur presents added complexity from its many valence states. The methods include: B3LYP/6-311++G(d,p), B3LYP/6-311++G(3df,2p), CCSD(T)/6-311G(d,p)//MP2/6-31G(d,p), B3P86/6-311G(2d,2p)//B3P86/6-31G(d), B3PW91/6-311++G(3df,2p), G3MP2, and CBS-QB3. The well depth for the CH3S* + 3O2 reaction to the syn-CH3SOO* adduct is found to be 9.7 kcal/mol. Low barrier exit channels from the syn-CH3SOO* adduct include: CH2S + HO2, (TS6, E(a) is 12.5 kcal/mol), CH3 + SO2 via CH3SO2 (TS2', E(a) is 17.8) and CH3SO + O (TS17, E(a) is 24.7) where the activation energy is relative to the syn-CH3SOO* stabilized adduct. The transition state (TS5) for formation of the CH3SOO adduct from CH3S* + O2 and the reverse dissociation of CH3SOO to CH3S* + O2 is relatively tight compared to typical association and simple bond dissociation reactions; this is a result of the very weak interaction. Reverse reaction is the dominant dissociation path due to enthalpy and entropy considerations. The rate constants from the chemical activation reaction and from the stabilized adduct to these products are estimated as functions of temperature and pressure. Our forward rate constant and CH3S loss profile are in agreement with the experiments under similar conditions. Of the methods above, the G3MP2 and CBS-QB3 composite methods are recommended for thermochemical determinations on these carbon-sulfur-oxygen systems, when they are feasible.  相似文献   

11.
The binding energy spectra (BES) of valence shells of CH2BrCl and CF2BrCl have been measured at a series of different azimuthal angles by an (e, 2e) electron momentum spectrometer employing noncoplanar symmetric geometry at an impact energy of 1200 eV plus binding energy. The experimental momentum profiles (XMPs) are extracted from the sequential BES and compared with the theoretical ones calculated by using Hartree-Fock (HF) and density functional theory (DFT-B3LYP) calculations with 6-311G, 6-311++G**, and aug-cc-pVTZ basis sets. In general, the DFT-B3LYP calculations using the larger basis sets 6-311++G** and aug-cc-pVTZ describe the XMPs well for both molecules. Moreover, the pole strengths of main ionizations from the inner valence orbitals 2a', 3a', and 1a' of CH2BrCl are determined, and the controversial ordering of two outer valence orbitals 3a' ' and 6a' of CF2BrCl has also been assigned unambiguously.  相似文献   

12.
The (19)F NMR shieldings for 53 kinds of perfluoro compounds were calculated by the B3LYP-GIAO method using the 6-31G(d), 6-31+G(d), 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p), 6-311++G(d,p), 6-311G(2d,2p), 6-311++G(2d,2p), 6-311++G(2df,2p), 6-311++G(3d,2p), and 6-311++G(3df,2p) basis sets. The diffuse functions markedly reduce the difference between the calculated and experimental chemical shifts. The calculations using the 6-31++G(d,p) basis set give the chemical shifts within 10 ppm deviations from experimental values except for the fluorine nuclei attached to an oxygen atom, a four- and a six-coordinated sulfur atom, and FC(CF(3))(2) attached to a sulfur atom.  相似文献   

13.
李晓艳  孟令鹏  曾艳丽  郑世钧 《化学学报》2009,67(18):2102-2108
利用MP2/6-311++G(d,p)//B3LYP/6-311++G(d,p)对CH3SS与XO (X=F, Cl, Br)的反应机理进行了研究. 着重从电子密度拓扑分析角度讨论了化学键的生成和断裂. 计算结果表明单线态反应为主要反应通道, 且由于该通道的反应能垒低、放热明显, 说明CH3SS与XO在大气中比较容易进行. 电子密度拓扑分析表明, 在单线态抽氢反应通道中存在着四元环状过渡结构, 随着反应进行, 此四元环状过渡结构通过一个T-型结构变为三元环状过渡结构, 最后环状结构消失得到产物.  相似文献   

14.
The use of the standard density functional theory (DFT) leads to an overestimation of the paramagnetic contribution and underestimation of the shielding constants, especially for chlorinated carbon nuclei. For that reason, the predictions of chlorinated compounds often yield too high chemical shift values. In this study, the WC04 functional is shown to be capable of reducing the overestimation of the chemical shift of Cl‐bonded carbons in standard DFT functionals and to show a good performance in the prediction of 13C NMR chemical shifts of chlorinated organic compounds. The capability is attributed to the minimization of the contributions that intensively increase the chemical shift in the WC04. Extensive computations and analyses were performed to search for the optimal procedure for WC04. The B3LYP and mPW1PW91 standard functionals were also used to evaluate the performance. Through detailed comparisons between the basis set effects and the solvent effects on the results, the gas‐phase GIAO/WC04/6‐311+G(2d,p)//B3LYP/6‐31+G(d,p) was found to be specifically suitable for the prediction of 13C NMR chemical shifts of chlorides in both chlorinated and non‐chlorinated carbons. Further tests with eight molecules in the probe set sufficiently confirmed that WC04 was undoubtedly effective for accurately predicting 13C NMR chemical shifts of chlorinated organic compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The cysteine anion was produced in the gas phase by electrospray ionization and investigated by photoelectron spectroscopy at low temperature (70 K). The cysteine anion was found to exhibit the thiolate form [-SCH2CH(NH2)CO2H], rather than the expected carboxylate form [HSCH2CH(NH2)CO2-]. This observation was confirmed by two control experiments, that is, methyl cysteine [CH3SCH2CH(NH2)CO2-] and cysteine methyl ester [-SCH2CH(NH2)CO2CH3]. The electron binding energy of [-SCH2CH(NH2)CO2H] was measured to be about 0.7 eV blue-shifted relative to [-SCH2CH(NH2)CO2CH3] due to the formation of an intramolecular -S-...HO2C- hydrogen bond in the cysteine thiolate. Theoretical calculations at the CCSD(T)/6-311++G(2df,p) and B3LYP/6-311++G(2df,p) levels were carried out to estimate the strength of this intramolecular -S-...HO2C- hydrogen bond. Combining experimental measurements and theoretical calculations yielded an estimated value of 16.4 +/- 2.0 kcal/mol for the -S-...HO2C- intramolecular hydrogen-bond strength.  相似文献   

16.
Fragments of C24H12, adapted from a variety of armchair [(n,n), (n = 5, 7, and 8)] and zigzag [(m,0) (m = 8, 10, and 12)] single-walled carbon nanotube (SWCNT), are used to model corresponding SWCNTs with different diameters and electronic structures. The parallel binding mainly through pi...pi stacking interaction, as well as the perpendicular binding via cooperative NH...pi and CH...pi between cytosine and the fragments of SWCNT have been extensively investigated with a GGA type of DFT, PW91LYP/6-311++G(d,p). The eclipsed tangential (ET) conformation with respect to the six-membered ring of cytosine and the central ring of SWCNT fragments is less stable than the slipped tangential (ST) conformation for the given fragment; perpendicular conformations with NH2 and CH ends have higher negative binding energy than those with NH and CH ends. At PW91LYP/6-311++G(d,p) level, two tangential complexes are less bound than perpendicular complexes. However, as electron correlation is treated with MP2/6-311G(d,p) for PW91LYP/6-311++G(d,p) optimized complexes, it turns out there is an opposite trend that two tangential complexes become more stable than three perpendicular complexes. This result implies that electron correlation, a primary source to dispersion energy, has more significant contributions to the pi...pi stacking complexes than to the complexes via cooperative NH...pi and CH...pi interactions. In addition, it was found for the first time that binding energies for two tangential complexes become more negative with increasing nanotube diameter, while those for three perpendicular complexes have a weaker dependence on the curvature; i.e., binding energies are slightly less and less negative. The performance of a novel hybrid DFT, MPWB1K, was also discussed.  相似文献   

17.
The 33S NMR signal of gaseous carbonyl sulfide (COS) was monitored as a function of density for the first time. An extrapolation to the zero‐density limit permitted the measurement of nuclear magnetic shielding of an isolated COS molecule. An improved 33S shielding scale was established taking the value of 817(12) ppm as the absolute shielding of COS. The new 33S shielding scale is certainly more accurate than any previous estimation and contains some reference standards, e.g. an isolated SF6 molecule, a saturated solution of (NH4)2SO4 in D2O, 2 M aqueous Cs2SO4 solution or liquid SF6, CS2 and SO2. The latter results can be applied for the easy estimation of sulfur shielding available from all the measurements of 33S NMR chemical shifts. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
The 13C chemical shifts in selected nitrilimines, nitriles, acetylenes, allenes, and singlet carbenes have been calculated using density-functional theory [PBE0/6-311++G(2df,pd)] and the gauge including atomic orbital (GIAO) method. The effects of substitution on the 13C chemical shifts in nitrilimines, R1-CNN-R2, have been examined. The carbon nucleus is generally found to be deshielded by substituents in the order CH3 < NH2 < OH < F. Comparison with nitriles, acetylenes, and allenes shows that this effect is related to the presence of the cumulated functionality, C=N=N. Terminal N-substitution is found to have a larger effect than C-substitution due to a large increase in chemical shielding anisotropy. The electronic structure of nitrilimines has recently been shown to possess a carbene component whose resonance contribution varies widely with substitution, and, as previously reported, insight into the electronic structure can be gained by an analysis of the shielding tensor, especially for carbenes. Accordingly, the components of the diagonalized 13C shielding tensor for nitrilimines and stable singlet carbenes have been examined. This analysis suggests that diaminonitrilimine, H2N-CNN-NH2, may be a stable carbene, and, to the best of our knowledge, it would be the first acyclic, unsaturated stable carbene ever reported. Finally, a detailed analysis of the 13C chemical shifts shows that an increase in the dipolar character of nitrilimines induces a shielding at the carbon nucleus, while an increase in allenic or carbenic character tends to cause a deshielding.  相似文献   

19.
The GIAO (Gauge Including Atomic Orbitals) DFT (Density Functional Theory) method is applied at the B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311+G (2d,p)//B3LYP/6-31+G(d) and B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants for 25 nitro-substituted five-membered heterocycles. Difference (1D NOE) spectra in combination with long-range gHMBC experiments were used as tools for the structural elucidation of nitro-substituted five-membered heterocycles. The assigned NMR data (chemical shifts and coupling constants) for all compounds were found to be in good agreement with theoretical calculations using the GIAO DFT method. The magnitudes of one-bond (1JCH) and long-range (nJCH, n>1) coupling constants were utilized for unambiguous differentiation between regioisomers of nitro-substituted five-membered heterocycles.  相似文献   

20.
Postulated conformers of trifluoromethylated β-aminoenones stabilized by intramolecular NH?O and N?HO bonds were studied by IR and NMR spectroscopy and evaluated with quantum chemical calculations (B3LYP/6-311+G(d,p), MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p) and MP2/6-31G(d,p)) and NBO analysis. The influence of the nature of EWG, substituents at the nitrogen atom and double bond, and of orbital interactions of heteroatoms and double bonds in these structures on the proton affinity of basic and acid centers, strength of hydrogen bonds, and the energy of tautomeric transfers is discussed. The theoretical results agree satisfactorily with the experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号