首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Cationic palladium(II) and rhodium(I) complexes bearing 1,2-diaryl-3,4-bis[(2,4,6-tri-t-butylphenyl)phosphinidene]cyclobutene ligands (DPCB–Y) were prepared and their structures and catalytic activity were examined (aryl = phenyl (DPCB), 4-methoxyphenyl (DPCB–OMe), 4-(trifluoromethyl)phenyl (DPCB–CF3)). The palladium complexes [Pd(MeCN)2(DPCB–Y)]X2 (X = OTf, BF4, BAr4 (Ar = 3,5-bis(trifluoromethyl)phenyl)) were prepared by the reactions of DPCB–Y with [Pd(MeCN)4]X2, which were generated from Pd(OAc)2 and HX in MeCN. On the other hand, the rhodium complexes [Rh(MeCN)2(DPCB–Y)]OTf were prepared by the treatment of [Rh(μ-Cl)(cyclooctene)2]2 with DPCB–Y in CH2Cl2, followed by treatment with AgOTf in the presence of MeCN. The cationic complexes catalyzed conjugate addition of benzyl carbamate to α,β-unsaturated ketones.  相似文献   

2.
Eight new copper(II) complexes with halo-aspirinate anions have been synthesized: [Cu2(Fasp)4(MeCN)2]?·?2MeCN (1), [Cu2(Clasp)4(MeCN)2]?·?2MeCN (2), [Cu2(Brasp)4(MeCN)2]?·?2MeCN (3), {[Cu2(Fasp)4(Pyrz)]?·?2MeCN} n (4), {[Cu2(Clasp)4(Pyrz)]?·?2MeCN} n (5), [Cu2(Brasp)4(Pyrz)] n (6), [Cu2(Clasp)4(4,4′-Bipy)] n (7), and [Cu2(Brasp)4(4,4′-Bipy)] n (8) (Fasp: fluor-aspirinate; Clasp: chloro-aspirinate; Brasp: bromo-aspirinate; MeCN: acetonitrile; Pyrz: pyrazine; 4,4′-Bipy: 4,4′-bipyridine). The crystal structure of two 2 and 4 have been determined by X-ray diffraction methods. All compounds have been studied employing elemental analysis, IR, and UV-Visible spectroscopic techniques. The results have been compared with previous data reported for complexes with similar structures.  相似文献   

3.
Treatment of the uranium(IV) complexes [{ML1(py)}2UIV] (M = Cu, Zn; L1 = N,N′-bis(3-hydroxysalicylidene)-1,3-propanediamine) with silver nitrate in pyridine led to the formation of the corresponding cationic uranium(V) species which were found to be thermally unstable and were converted back into the parent UIV complexes; no electron transfer was observed in solution between the UIV and UV compounds. In the crystals of [{ML1(py)}2UIV][{ML1(py)}2UV][NO3], the neutral UIV and cationic UV species are clearly identified by the distinct U–O distances. Similar reaction of [{ZnL2(py)}2UIV] [L2 = N,N′-bis(3-hydroxysalicylidene)-1,4-butanediamine] with AgNO3 gave crystals of [{ZnL2(py)}UV{ZnL2(py)2}][NO3] but the copper counterpart was not isolated. Crystals of [{ZnL1(py)}2UV][OTf] · THF (OTf = OSO2CF3) were obtained fortuitously from the reaction of [Zn(H2L1)] and U(OTf)3.  相似文献   

4.
We successfully isolated a new paramagnetic bidentate ligand tert-butyl 5-methoxy-2-pyridyl nitroxide (meopyNO). Complexation of nickel(II) and copper(II) perchlorates with meopyNO gave the corresponding ML2-type bis-chelated compounds. The magnetic studies showed that they were ground high-spin molecules with 2J/kB = +288(5) and +178(3) K for [M(meopyNO)2(H2O)2] · (ClO4)2 (M = Ni and Cu, respectively), where the spin Hamiltonian is defined as H = ?2J(S1 · S2 + S2 · S3). From the crystallographic analysis, the torsion angles (?) around M–O–N–C2py were 4.2(3)° and 6.87(19)°, respectively, being so small that the orthogonality between the magnetic radical π1 and the metal dσ orbitals would be guaranteed.  相似文献   

5.
Halide abstraction from [Pd(μ-Cl)(Fmes)(NCMe)]2 (Fmes = 2,4,6-tris(trifluoromethyl)phenyl or nonafluoromesityl) with TlBF4 in CH2Cl2/MeCN gives [Pd(Fmes)(NCMe)3]BF4, which reacts with monodentate ligands to give the monosubstituted products trans-[Pd(Fmes)L(NCMe)2]BF4 (L = PPh3, P(o-Tol)3, 3,5-lut, 2,4-lut, 2,6-lut; lut = dimethylpyridine), the disubstituted products trans-[Pd(Fmes)(NCMe)(PPh3)2]BF4, cis-[Pd(Fmes)(3,5-lut)2(NCMe)]BF4, or the trisubstituted products [Pd(Fmes)L3]BF4 (L = CNtBu, PHPh2, 3,5-lut, 2,4-lut). Similar reactions using bidentate chelating ligands give [Pd(Fmes)(L-L)(NCMe)]BF4 (L-L = bipy, tmeda, dppe, OPPhPy2-N,N′, (OH)(CH3)CPy2-N,N′). The complexes trans-[Pd(Fmes)L2(NCMe)]BF4 (L = PPh3, tht) (tht = tetrahydrothiophene) and [Pd(Fmes)(L-L)(NCMe)]BF4 (L-L = bipy, tmeda) were obtained by halide extraction with TlBF4 in CH2Cl2/MeCN from the corresponding neutral halogeno complexes trans-[Pd(Fmes)ClL2] or [Pd(Fmes)Cl(L-L)]. The aqua complex trans-[Pd(Fmes)(OH2)(tht)2]BF4 was isolated from the corresponding acetonitrile complex. Overall, the experimental results on these substitution reactions involving bulky ligands suggest that thermodynamic and kinetic steric effects can prevail affording products or intermediates different from those expected on purely electronic considerations. Thus,water, whether added on purpose or adventitious in the solvent, frequently replaces in part other better donor ligands, suggesting that the smaller congestion with water compensates for the smaller M-OH2 bond energy.  相似文献   

6.
Previously unknown [ML2(H2O) n ] bischelates, where M is Mn(II), Co(II), Ni(II), or Cu(II) and L is deprotonated triformylmethane, are studied by X-ray diffraction analysis. It is revealed that in the crystals of all compounds there are multiple hydrogen bonds linking bischelate molecules into polymer layers or a single framework. The character of the temperature dependence of the effective magnetic moment [ML2(H2O) n ] indicates the existences of weak intracrystalline exchange interactions between the unpaired electrons of the paramagnetic centers.  相似文献   

7.
The synthesis, structures and magnetism of the complexes [FeII(3-bpp)2][bpmdcK](SeCN)1.7(ClO4)1.3·MeOH·H2O (1), [FeII(3-bpp)2]4[bpmdcH2(H2O)2](ClO4)10·7H2O·3MeOH (2) and cis-[FeII2(NCSe)2((3,5-Me2pz)3CH)2(μ-bpmdc)]·2MeCN (3) (where 3-bpp = 2,6-di(pyrazole-3yl)pyridine, bpmdc = N,N′-bis(4-pyridyl-methyl)diaza-18-crown-6) and (3,5-Me2pz)3CH = tris(3,5-dimethylpyrazole)methane, are presented. These compounds form a study of the supramolecular influence of host–guest/crown-ether interactions and cation-to-crown hydrogen-bonding effects upon d6 spin transitions, the latter occurring above, or near to, room temperature in 1 and 2. Desolvation effects also influence the T1/2 values. The dinuclear compound 3 contains covalent pyridyl (crown) N to Fe bridge bonding and remains high spin.  相似文献   

8.
《Polyhedron》2005,24(16-17):2165-2172
Five new hydrogen-bonded solvated iron(II) complexes of pyrazolyl- and imidazolyl-based N,N-chelating ligands have been synthesised. Water to ligand-NH hydrogen-bonded bridges occur in the pseudo-dimeric complexes {cis-[Fe(pypzH)2(NCX)2]2(μ-OH2)(H2O)2} · H2O · MeOH (where X = S or Se), and in the chain complex {cis-[Fe(pypzH)2(NCS)2](μ-OH2)}n. A “half” spin-crossover (Tc = 125 K) was observed in the dimeric X = Se complex by means of magnetic measurements and no thermal hysteresis occurred between 4 and 300 K. The crystal structure at 123 K showed Fe–N distances consistent with the magnetism. Each Fe in the dimeric unit was structurally equivalent in the HS–LS state. Removal of the solvate molecules led to HS–HS behaviour over the temperature range 4–300 K. The pseudo-dimer with X = S also showed HS–HS behaviour as did the monomeric analogue cis-[Fe(pypzH)2(NCS)2]H2O and a structurally different methanol-bridged dimer {cis-[Fe(pyimH)2(NCS)2]2(μ-MeOH)2} · 2MeOH (pypzH = 2-(1H-pyrazol-3-yl)-pyridine; pyimH = 2-(1H-imidazol-2-yl)-pyridine).  相似文献   

9.
《Solid State Sciences》2007,9(11):1006-1011
Three complexes, M2(bpy)2(bpdc)2·xH2O [M = Cu, x = 0; M = Zn or Cd, x = 2], have been hydrothermally synthesized by 1,1′-biphenyl-2,2′-dicarboxylic acid (H2bpdc) with 2,2′-bipyridine (bpy) to form binuclear molecules. In each, the two bpdc groups align the two opposing planar [M(bpy)]2+ cations. The molecules are connected by C–H⋯O hydrogen bonds, π–π stacking, and C–H⋯π interactions to form three dimensional supramolecular networks. Furthermore, at room temperature, complex 3 exhibits strong photoluminescence.  相似文献   

10.
Summary New coordination compounds of NiII and CoII with dichloropyrimidinoguanidine (L) have been obtained and characterized by physico-chemical and spectroscopic methods. The complexes have the general formulae: [ML3](ClO4)2, [ML2(SO4)], [ML2(NCS)2], (M = Ni or Co), [NiL2(ClO4)2] and [CoL2](ClO4)2. The ligands are bonded to the metal ion via one nitrogen atom from the pyrimidine heterocyclic ring and one from the guanidine group.  相似文献   

11.
Complexes of general formula, [M(isa-sme)2] · n(solvate) [M = Ni2+, Cu2+, Zn2+, Cd2+; isa-sme = monoanionic form of the Schiff base formed by condensation of isatin with S-methyldithiocarbazate; n = 1 or 1.5; solvate = MeCN, DMSO, MeOH or H2O] have been synthesized and characterized by a variety of physicochemical techniques. An X-ray crystallographic structure determination of the [Ni(isa-sme)2] · MeCN complex reveals a six-coordinate, distorted octahedral geometry. The two uninegatively charged, tridentate, Schiff base ligands are coordinated to the nickel(II) ion meridionally via the amide O-atoms, the azomethine N-atoms and the thiolate S-atoms. By contrast, the crystal structure of [Zn(isa-sme)2] · MeOH shows a four-coordinate distorted tetrahedral geometry. The two dithiocarbazate ligands are coordinated as NS bidentate chelates with the amide O-atom not coordinated. The structure of the copper(II) complex [Cu(isa-sme)2] · DMSO is complicated and comprises two different complexes in the asymmetric unit, one four- and the other five-coordinate. The four-coordinate copper(II) has a distorted (flattened) tetrahedral geometry as seen in the Zn(II) analogue whereas the five-coordinate copper(II) has a distorted square-pyramidal geometry with one ligand coordinated to the copper(II) ion as a tridentate (NSO) ligand and the other coordinated as a bidentate NS chelate. EPR spectroscopy indicates that in solution only one form is present, that being a distorted tetrahedral complex.  相似文献   

12.
《Polyhedron》2007,26(9-11):2121-2125
The hybrid organo-inorganic compounds [Cu4(bipy)4V4O11(PO4)2]nH2O (n  5) (1), [Cu2(phen)2(PO4)(H2PO4)2(VO2) · 2H2O] (2) and [Cu2(phen)2(O3PCH2PO3)(V2O5) (H2O)]H2O (3) which present different bridging forms of the phosphate/phosphonate group, show different bulk magnetic properties. We herein analyze the magnetic behaviour of these compounds in terms of their structural parameters. We also report a theoretical study for compound (1) assuming four different magnetic exchange pathways between the copper centres present in the tetranuclear unit. For compound (1) the following J values were obtained J1 = +3.29; J2 = −0.63; J3 = −2.23; J4 = −46.14 cm−1. Compound (2) presents a Curie–Weiss behaviour in the whole range of temperature (3–300 K), and compound (3) shows a maximum for the magnetic susceptibility at 64 K, typical for antiferromagnetic interactions. These data where fitted using a model previously reported in the literature, assuming two different magnetic exchange pathways between the four copper(II) centres, with J1 = −30.0 and J2 = −8.5 cm−1.  相似文献   

13.
The molecular structures of the isatin Schiff bases of S-methyldithiocarbazate (Hisasme) and S-benzyldithiocarbazate (Hisasbz) have been determined by X-ray diffraction and their complexes of general formula [ML2n(solvate) [M = Co2+, Ni2+, Zn2+; L = anionic forms of Hisasme or Hisasbz; solvate = DMF, DMSO; n = 1, 2] and [Sn(L)Ph2Cl]·nMeOH (n = 0, 1) have been synthesized and characterized by a variety of physicochemical techniques and X-ray diffraction. The bis-ligand complexes, [Ni(isasbz)2]·2DMSO and [Co(isasme)2]·DMF have a six-coordinate, distorted octahedral geometry with the two uninegatively charged tridentate ONS ligands coordinated to the metal ions meridionally via the amide O-atoms, the azomethine nitrogen atoms and the thiolate sulfur atoms. By contrast, the crystal structure of [Zn(isasbz)2]·2DMF shows a four-coordinate distorted tetrahedral geometry with the two Schiff bases coordinated as NS bidentate ligands via the azomethine nitrogen atoms and the thiolate sulfur atoms. Steric constraints of the rigid tridentate ligands lead to unusual ‘pseudo-coordination’ of the O-donors which occupy sites close to the metal but too distant to be considered as true coordinate bonds.The crystal structures of the tin(IV) complexes [SnLPh2Cl]·nMeOH (L = isasme and isasbz; n = 0, 1) also show that the Schiff bases act as monoanionic bidentate NS chelating agents coordinating the tin(IV) ion via the azomethine nitrogen atoms and the thiolate sulfur atoms, the tin atom in each complex is five-coordinate with a highly distorted geometry intermediate of square pyramidal and trigonal bipyramidal. Again Sn?O contacts are weak and do not qualify as coordinate bonds.  相似文献   

14.
A novel series of three trivalent mononuclear ternary complexes of the type, [ML1L2] [M = Cr(III), Fe(III) and La(III), HL1 = 2-((2-(2,4-dinitrophenyl)hydrazone)methyl)phenol, HL2 = 2-aminophenol] was investigated by various physio-chemical studies. To obtain additional information inside the structure, density functional theory calculation was also carried out. The synthesized complexes showed remarkable antimicrobial activity when tested against A. niger, A. flavus, R. stolonifer, C. albicans, E. coli and Klebsiella sp. microbes. Furthermore, the molecular docking analysis was also carried out to analyze the interactions in protein–ligand complexes. Moreover, the quantitative structure–activity relationship was also investigated to study the biological activity of the ligand.  相似文献   

15.
This mini-review covers a novel series of 1D and 2D Te/SeFe3(CO)9-incorporated (Te, 1a ; Se, 1b ) Cu-based coordination polymers synthesized by the liquid-assisted grinding (LAG) method using predesigned compound [TeFe3(CO)9Cu2(MeCN)2] ( 1a-Cu 2 (MeCN) 2 ) with rigid or flexible dipyridyl ligands, or three components of [SeFe3(CO)9]2− ( 1b ), [Cu(MeCN)4]+, and dipyridyls. These polymers displayed various cluster coordination modes, including cluster-blocked [EFe3(CO)9Cu2(L)]n (E = Te, 1a-L-1D , Se, 1b-L-1D ; L = 1,2-bis(4-pyridyl)ethylene (bpee), 1,2-bis(4-pyridyl)ethane (bpea)), cluster-pendant [SeFe3(CO)9Cu2(dpy)3]n ( 1b-dpy-1D , dpy = 4,4′-dipyridyl) and [EFe3(CO)9Cu2(L)2.5]n (E = Te, 1a-L-2D , Se, 1b-L-2D ; L = bpee, bpea), cluster-linked [SeFe3(CO)9Cu2(MeCN)(dpy)1.5]n ( 1b-dpy-2D ) and [SeFe3(CO)9Cu2(bpp)2]n ( 1b-bpp-2D , bpp = 1,3-bis(4-pyridyl)propane), as well as the unique cation-anion polymer [{Cu2(bpp)4}{(TeFe3(CO)9Cu)2(bpp)}]n ( 1a-bpp-CA ). Their dimensionality expansions and reversible transformations accompanied with bonding pattern changes were achieved upon the addition of stoichiometric amounts of appropriate agents. These polymers exhibited pronounced semiconducting properties with tunable energy gaps and optical (dc) or electrical conductivities. The trend of their semiconductivities can be related to bonding patterns, where efficient electron communications were proved to stem from the existence of carbonyl ligands and electron-rich clusters 1a and 1b . In particular, water−/light-stable 1b -based polymers exhibited excellent photodegradation activities toward nitroaromatics and organic dyes, where the efficiency was further rationalized by their structural features and narrow energy gaps.  相似文献   

16.
The reaction of aquo-ethanolic solutions of Co(II), Ni(II) and Cu(II) salts and ethanolic solution of capric acid hydrazide (L) yielded paramagnetic, high-spin bis- and tris(ligand) chelate complexes. The tris(ligand) complexes, [ML 3]X 2·nH2O [M=Co(II), Ni(II);X=NO 3 , ClO 4 , 1/2SO 4 2– ], have an octahedral structure formed on account of the bidentate (NO) coordination of three neutral hydrazide molecules. In the bis(ligand) complexes,ML 2(NCS)2 [M=Co(II), Ni(II)] and CuL 2 X 2·nH2O (X=NO 3 , ClO 4 and 1/2SO 4 2– ), the oxoanions and NCS take also part in coordination. The complexes have been characterized by elemental analysis, IR spectra, magnetic measurements, molar conductivity and TG analysis.
Caprinsäurehydrazid-Komplexe von Co(II), Ni(II) und Cu(II)
Zusammenfassung Durch die Reaktion von wäßrig-ethanolischen Lösungen von Co(II)-, Ni(II)-und Cu(II)-Salzen mit einer ethanolischen Lösung von Caprinsäurehydrazid (L) wurden paramagnetische high-spin Bis- und Tris-Ligand-Chelatkomplexe erhalten. Tris-Ligand-Komplexe des Typs [ML 3 X 2·nH2O [M=Co(II), Ni(II);X=NO 3 , ClO 4 , 1/2SO 4 2– ], die eine oktaedrische Struktur besitzen, entstehen durch die Koordination von drei neutralen zweizähnigen (NO)-Hydrazidmolekülen. Bei den Bis-Ligand-KomplexenML 2(NCS)2 [M=Co(II), Ni(II)], sowie bei den Bis-Ligand-Komplexen CuL 2 X 2·nH2O (X=NO 3 , ClO 4 , 1/2SO 4 2– ) nehmen bei der Koordination außer Hydrazid auch die Säurereste teil. Die Komplexe wurden durch Elementaranalyse, IR-Spektren, magnetische Messungen, molare Leitfähigkeit und TG-Analysen charakterisiert.
  相似文献   

17.
Two manganese coordination polymers, [Mn2(ip)2(dmf)]·dmf (1) and [Mn4(ip)4(dmf)6]·2dmf (2) (ip=isophthalate; dmf=N,N-dimethylformamide), have been synthesized and characterized. X-ray crystal structural data reveal that compound 1 crystallizes in triclinic space group P?1, a=9.716(3) Å, b=12.193(3) Å, c=12.576(3) Å, α=62.19(2)°, β=66.423(17)°, γ=72.72(2)°, Z=2, while compound 2 crystallizes in monoclinic space group Cc, a=19.80(3) Å, b=20.20(2) Å, c=18.01(3) Å, β=108.40(4)°, Z=4. Variable-temperature magnetic susceptibilities of compounds 1 and 2 exhibit overall weak antiferromagnetic coupling between the adjacent Mn(II) ions.  相似文献   

18.
The complexes trans-[RuCl2(L){(S,S)-iPr-pybox}] ((S,S)-iPr-pybox = 2,6-bis[4′-(S)-isopropyloxazolin-2′-yl]pyridine, L = PMe3 (1), P(OMe)3 (2), PPh2(CH2CHCH2) (3), CNBn (5), CNCy (6) and MeCN (7)) have been synthesized by substitution of ethylene on the precursor trans-[RuCl2(η2-C2H4){(S,S)-iPr-pybox}]. This complex also reacts with cyclooctadiene (cod) or norbornadiene (nbd) and NaPF6, in refluxing methanol, giving the coordination compounds [RuCl(η4-cod){(S,S)-iPr-pybox}][PF6] (8) and [RuCl(η4-nbd){(S,S)-iPr-pybox}][PF6] (9). The structures of complexes [RuCl(CO)(PPh3)(H-pybox)][BF4] (H-pybox = 2,6-bis(dihydrooxazolin-2′-yl)pyridine) (4), 6 and 8, have been resolved by X-ray diffraction methods. The catalytic activity of the new complexes in transfer hydrogenation of acetophenone has also been examined.  相似文献   

19.
《Solid State Sciences》2007,9(6):465-471
The structure of the new hybrid compound [Ni3(OH)2(tp)2(H2O)4]·2H2O (tp = C8H4O42−) has been determined ab initio from synchrotron powder diffraction data and refined with the Rietveld method: space group P-1, a = 10.2077(6) Å, b = 8.0135(5) Å, c = 6.3337(4) Å, α = 97.70 (1)°, β = 97.21(1)°, γ = 108.77(1)°, Dx = 2.124 g/cm3, Rp = 0.045, RB = 0.095 (757 independent reflections). H atoms were placed geometrically and their position optimized by DFT calculation. The repeating structural unit is the chain [Ni(1)O6]2Ni(2)O6, consisting of two edges sharing octahedrons related by the symmetry center and linked via μ3-OH to a vertex of Ni(2) octahedron. The Ni(1) coordination is ensured by two oxygen atoms from two water molecules, two OH and two oxygen atoms from carboxylate groups. The linkage of the chains by the tp anions forms infinite layers parallel to the (010) planes. Interchain hydrogen bonds between the water molecules coordinating the metal ensure the cohesion of the 2D structure. The structural and magnetic properties are compared with that of the 3D fumarate-based compound [Ni3(OH)2(fum)2(H2O)4]·2H2O (fum = C4H2O42−).  相似文献   

20.
The reactions of [MCl2(PP)] and [MCl2(PR3)2)] with 1-mercapto-2-phenyl-o-carborane/NaSeCboPh and 1,2-dimercapto-o-carborane yield mononuclear complexes of composition, [M(SCboPh)2(PP)], [M(SeCboPh)2(PP)] (M = Pd or Pt; PP = dppm (bis(diphenylphosphino)methane), dppe (1,2-bis(diphenylphosphino)ethane) or dppp (1,3-bis(diphenylphosphino)propane)) and [M(SCboS)(PR3)2] (2PR3 = dppm, dppe, 2PEt3, 2PMe2Ph, 2PMePh2 or 2PPh3). These complexes have been characterized by elemental analysis and NMR (1H, 31P, 77Se and 195Pt) spectroscopy. The 1J(Pt–P) values and 195Pt NMR chemical shifts are influenced by the nature of phosphine as well as thiolate ligand. Molecular structures of [Pt(SCboPh)2(dppm)], [Pt(SeCboPh)2(dppm)], [Pt(SCboS)(PMe2Ph)2] and [Pt(SCboS)(PMePh2)2] have been established by single crystal X-ray structural analyses. The platinum atom in all these complexes acquires a distorted square planar configuration defined by two cis-bound phosphine ligands and two chalcogenolate groups. The carborane rings are mutually anti in [Pt(SCboPh)2(dppm)] and [Pt(SeCboPh)2(dppm)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号