首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A synthesized peptidolipid (C18IIGLM-NH2) comprised of a single C18-saturated hydrocarbon chain connected to the amino acid sequence IIGLM terminated with the NH2 group was spread on water, which formed a stable Langmuir monolayer. The Langmuir and Langmuir-Blodgett (LB) films have been characterized by measurements of surface pressure-area (pi-A) and surface potential-area (DeltaV-A) isotherms and infrared multiple-angle incidence resolution spectrometry (MAIRS). The Langmuir monolayer had a significantly larger limiting molecular area than that of a similar molecule of C18IIGLM-OH, which was reported in our previous study. The surface dipole moment analysis coupled with the pi-A isotherm suggested that the C18IIGLM-NH2 monolayer was extraordinarily stiff and the fundamental structure of the monolayer was brought about before the monolayer compression. The infrared MAIRS analysis of the C18IIGLM-NH2 LB film revealed that the backbone structure of the monolayer was the 'antiparallel' beta sheet aligned parallel to the substrate. Since the C18IIGLM-OH LB film was made of 'parallel' beta sheet with a random orientation, it has been found that the present C18IIGLM-NH2 Langmuir monolayer has a largely different monolayer structure, although the chemical structures are slightly different from each other by the terminal group only.  相似文献   

2.
Langmuir monolayers have been extensively investigated by various experimental techniques. These studies allowed an in-depth understanding of the molecular conformation in the layer, phase transitions, and the structure of the multilayer. As the monolayer is compressed and the surface pressure is increased beyond a critical value, usually occurring in the minimal closely packed molecular area, the monolayer fractures and/or folds, forming multilayers in a process referred to as collapse. Various mechanisms for monolayer collapse and the resulting reorganization of the film have been proposed, and only a few studies have demonstrated the formation of a bilayer after collapse and with the use of a Ca(2+) solution. In this work, Langmuir isotherms coupled with imaging ellipsometry and polarization modulation infrared reflection absorption spectroscopy were recorded to investigate the air-water interface properties of Langmuir films of anionic nucleolipids. We report for these new molecules the formation of a quasi-hexagonal packing of bilayer domains at a low compression rate, a singular behavior for lipids at the air-water interface that has not yet been documented.  相似文献   

3.
Molecular structure in dip-coated films of linear poly(ethylene imine) (LPEI) on a germanium (Ge) substrate in dried and hydrated conditions have been analyzed by infrared multiple-angle incidence resolution spectrometry (IR MAIRS). The MAIRS-IP (in-plane) and -OP (out-of-plane) spectra of the dried film exhibited largely different patterns from each other, which indicated that LPEI molecules had an apparent molecular orientation with respect to the substrate surface. Although the film exhibited no peak in X-ray diffraction patterns, the low-crystallinity film has been found to have highly oriented molecular structure. Many key bands indicated that the molecules were involved in the double-stranded helix structure, which is specific to the anhydrate crystal of LPEI, with nearly perpendicular orientation. The Davydov splitting of the NH stretching vibration mode was readily captured by the IR MAIRS spectra, which also supported the helix standing model. When the film was stored in a humid condition, on the other hand, IR MAIRS spectra revealed that the helix was resolved to be straight chains, but the perpendicular orientation was kept unchanged. In addition, the MAIRS spectra also revealed molecular orientation of the water molecules of crystallization. The unique molecular arrangements are understandable by considering that the stabilization energy in the polymer monolayer directly attached on the substrate surface is minimized by the standing-molecule arrangements.  相似文献   

4.
Surface complexing (i.e., metal-bridged polymerization in this study) of a three-armed amphiphilic compound with metal-scavenging properties has been investigated using the surface pressure-area (π-A) isotherms of a Langmuir monolayer from the subphase. Inductively coupled plasma mass spectrometry (ICP-MS) was also carried out on eluted solutions from corresponding multilayers of the solid. Furthermore, the molecular arrangement and surface morphology of organized molecular films of the resultant comb polymer were estimated by in-plane and out-of-plane X-ray diffraction (XRD) and by atomic force microscopy. From an analysis of the wide-angle X-ray diffraction of the corresponding monomer in the bulk, the long hydrocarbon chains are observed to pack hexagonally in the solid state. Compared to their monolayer on distilled water as the subphase, a polymerized monolayer on a buffer solution containing Cd(2+) ions is remarkably expanded at 15 °C. From ICP-MS and IR measurements, it is found that this monolayer stoichiometrically contains Cd(2+) ions on the -SH group. It is found by XRD that highly ordered layer structures and regular 2D lattices are constructed in the organized molecular films of the Cd-bridged comb polymer. Furthermore, the surface morphology of Langmuir-Blodgett films fabricated from the monolayers on a buffer solution containing Cd(2+) and Pd(2+) shows flat and smooth domains upon metal scavenging and polymerization.  相似文献   

5.
Langmuir films have been fabricated from 4-[4'-(4'-thioacetyl-phenyleneethynylene)-phenyleneethynylene]-aniline (NOPES) after cleavage of the thioacetyl protecting group. Characterization by surface pressure vs area per molecule isotherms and Brewster angle microscopy reveal the formation of a high quality monolayer at the air-water interface. One layer Langmuir-Blodgett (LB) films were readily fabricated by the transfer of the NOPES Langmuir film onto solid substrates. X-ray photoelectron spectroscopy (XPS), surface polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and quartz crystal microbalance (QCM) experiments conclusively demonstrate the formation of one layer LB films in which the functional group associated with binding to the substrate can be tailored by the film transfer conditions. Using LB methods this molecule could be transferred to gold samples with either the amine or thiol group attached to the gold surface. The amine group is directly attached to the gold substrate (Au-NH(2)-OPE-SH) when the substrate is initially immersed in the subphase and withdrawn during the transfer process; in contrast, monomolecular films in which the thiolate group is attached to the gold substrate (Au-S-OPE-NH(2)) are obtained when the substrate is initially out of the subphase and immersed during the transfer process. The morphology of these films was analyzed by atomic force microscopy (AFM), showing the formation of homogeneous layers. Film homogeneity was confirmed by cyclic voltammetry, which revealed a large passivation of gold electrodes covered by NOPES monolayers. Electrical properties for both polar orientated junctions have been investigated by scanning tunnelling microscopy (STM), with both orientations featuring a nonrectifying behavior.  相似文献   

6.
《Liquid crystals》2001,28(3):437-444
The Langmuir films of two liquid crystal materials, 4-octyl-4'-cyanobiphenyl (8CB) and 4-pentyl-4"-cyano-p-terphenyl (5CT), and of their mixtures have been studied by recording surface pressure-area isotherms and Brewster angle microscopy (BAM) images. The pure liquid crystals revealed very different characters of the surface pressure-area isotherms indicating different organization of the molecules and different molecular interactions in the monolayer at the water-air interface. The surface pressure-area isotherms of Langmuir films formed from 8CB/5CT mixtures give evidence for phase separation of the components over the whole range of molar fractions. Similar conclusions have been drawn on the basis of BAM image analysis.  相似文献   

7.
This paper reports the preparation and characterization of pure Langmuir and Langmuir-Blodgett (LB) films of a stilbene derivative containing two alkyl chains, namely 4-dioctadecylamino-4'-nitrostilbene. Mixed films incorporating docosanoic acid and the stilbene derivative are also studied. Brewster angle microscopy (BAM) analysis has revealed the existence of randomly oriented three-dimensional (3D) aggregates, spontaneously formed immediately after the spreading process of the stilbene derivative onto the water surface. These 3D aggregates coexist with a Langmuir film that shows the typical gas, liquid, and solid-like phases in the surface pressure and surface potential vs area per molecule isotherms, indicative of an average preferential orientation of the stilbene compound at the air-water interface, and a gradual molecular arrangement into a defined structure upon compression. A blue shift of 55 nm of the reflection spectrum of the Langmuir film with respect to the spectrum of a chloroform solution of the nitrostilbene indicates that two-dimensional (2D) H-aggregates are formed at the air-water interface. The monolayers are transferred undisturbed onto solid substrates with atomic force microscopy (AFM) revealing that the one layer LB films are constituted by a monolayer of the stilbene derivative together with some 3D aggregates. When the nitrostilbene compound is blended with docosanoic acid, the 3D aggregation is avoided in the Langmuir and Langmuir-Blodgett films, but does not limit the formation of 2D H-aggregates, desirable for second-order nonlinear optical response in the blue domain. The AFM images of the mixed LB films show that they are formed by a docosanoic acid monolayer and, on the top of it, a bilayer of the stilbene derivative.  相似文献   

8.
Subphase conditions have been optimized to obtain stable organophosphorous hydrolase (OPH-EC 3.1.8.1) as Langmuir films. The Langmuir film was characterized by surface pressure and surface potential-area isotherms and UV-Vis spectroscopy in situ. The interaction of an organophosphorous compound, namely Paraoxon, with the OPH film was investigated for various surface pressures. The stability of the monolayer and the evidence of the enzyme activity at air-water interface support the use of enzyme LB films as biosensor.  相似文献   

9.
Four lignin samples were extracted from sugar cane bagasse using four different alcohols (methanol, ethanol, n-propanol, and 1-butanol) via the organosolv-CO2 supercritical pulping process. Langmuir films were characterized by surface pressure vs mean molecular area (Pi-A) isotherms to exploit information at the molecular level carrying out stability tests, cycles of compression/expansion (hysteresis), subphase temperature variations, and metallic ions dissolved into the water subphase at different concentrations. Briefly, it was observed that these lignins are relatively stable on the water surface when compared to those obtained via different extraction processes. Besides, the Pi-A isotherms are shifted to smaller molecular areas at higher subphase temperatures and to larger molecular areas when the metallic ions are dissolved into the subphase. The results are related to the formation of stable aggregates (domains) onto the water subphase by these lignins, as shown in the Pi-A isotherms. It was found as well that the most stable lignin monolayer onto the water subphase is that extracted with 1-butanol. Homogeneous Langmuir-Blodgett (LB) films of this lignin could be produced as confirmed by UV-vis absorption spectroscopy and the cumulative transfer parameter. In addition, FTIR analysis showed that this lignin LB film is structured in a way that the phenyl groups are organized preferentially parallel to the substrate surface. Further, these LB films were deposited onto gold interdigitated electrodes and ITO and applied in studies involving the detection of Cd+2 ions in aqueous solutions at low concentration levels through impedance spectroscopy and electrochemical measurements. FTIR spectroscopy was carried out before and after soaking the thin films into Cd+2 aqueous solutions, revealing a possible physical interaction between the lignin phenyl groups and the heavy metal ions. The importance of using nanostructured systems is demonstrated as well by comparing both LB and cast films.  相似文献   

10.
We report on the interactions between a 21-mer quadruplex-forming oligonucleotide bearing human telomere sequence of dG(3)(T(2)AG(3))(3) (G4 DNA) and a positively charged dioctadecyldimethylammonium bromide (DODAB) monolayer at the air-aqueous interface, studied by surface film balance measurements. In the presence of G4 DNA, the π-A isotherm of the cationic Langmuir film shifted to lower molecular areas when compared with the reference isotherm recorded on the subphase containing only 50 mM triethylamine-acetate (TEAA) buffer. The presence of quadruplex-stabilizing metal cations (K(+) or Na(+)) further affected profiles of π-A isotherms. Further insight into processes related to the G4 DNA-monolayer interactions was provided by recording time profiles of the surface pressure of monolayer at a constant mean molecular area. In these experiments G4 DNA and/or metal ions were sequentially injected under the monolayer surface. Results indicated that multistranded assemblies of G4 DNA were formed at the monolayer interface even in the absence of metal ions, which suggested that the charged cationic surface of Langmuir monolayer induced aggregation of guanine-rich DNA strands. The presence of sodium and potassium ions inhibited formation of multi-stranded assemblies through the competitive G-quadruplex formation but to different extent that might be related to the differences in stability and topology of both quadruplexes.  相似文献   

11.
The Langmuir films of two liquid crystal materials, 4-octyl-4'-cyanobiphenyl (8CB) and 4-pentyl-4"-cyano-p-terphenyl (5CT), and of their mixtures have been studied by recording surface pressure-area isotherms and Brewster angle microscopy (BAM) images. The pure liquid crystals revealed very different characters of the surface pressure-area isotherms indicating different organization of the molecules and different molecular interactions in the monolayer at the water-air interface. The surface pressure-area isotherms of Langmuir films formed from 8CB/5CT mixtures give evidence for phase separation of the components over the whole range of molar fractions. Similar conclusions have been drawn on the basis of BAM image analysis.  相似文献   

12.
The synthesis of a poly(azo)urethane by fixing CO(2) in bis-epoxide followed by a polymerization reaction with an azodiamine is presented. Since isocyanate is not used in the process, it is termed "clean method" and the polymers obtained are named "NIPUs" (non-isocyanate polyurethanes). Langmuir films were formed at the air-water interface and were characterized by surface pressure vs mean molecular area per mer unit (Pi-A) isotherms. The Langmuir monolayers were further studied by running stability tests and cycles of compression/expansion (possible hysteresis) and by varying the compression speed of the monolayer formation, the subphase temperature, and the solvents used to prepare the spreading polymer solutions. The Langmuir-Blodgett (LB) technique was used to fabricate ultrathin films of a particular polymer (PAzoU). It is possible to grow homogeneous LB films of up to 15 layers as monitored using UV-vis absorption spectroscopy. Higher number of layers can be deposited when PAzoU is mixed with stearic acid, producing mixed LB films. Fourier transform infrared (FTIR) absorption spectroscopy and Raman scattering showed that the materials do not interact chemically in the mixed LB films. The atomic force microscopy (AFM) and micro-Raman technique (optical microscopy coupled to Raman spectrograph) revealed that mixed LB films present a phase separation distinguishable at micrometer or nanometer scale. Finally, mixed and neat LB films were successfully characterized using impedance spectroscopy at different temperatures, a property that may lead to future application as temperature sensors. Principal component analysis (PCA) was used to correlate the data.  相似文献   

13.
Sulfate strongly adsorbs on metal oxides and soils with variable charges. However, its surface precipitation has not been clearly evaluated and its adsorption mechanism has been in dispute. In the present study, an allophanic andisol, a typical volcanic ash soil having both negative and positive variable charges, was used to identify the adsorption mechanism of sulfate. Sulfate adsorption isotherms were obtained by a batch method at pH values of 4, 5, 6, and 7 in a wide range of concentrations in an Na-H-SO(4)-OH system. Theoretical isotherms were applied to the measured values for the evaluation. The surface precipitation was detected by the measured adsorption isotherms, and the BET isotherm confirmed the presence of multilayer adsorption. Stronger and weaker adsorption sites were suggested by using the Langmuir isotherm for the monolayer adsorption. The adsorption energies obtained from the Langmuir equation and recent spectroscopic analysis suggested that the stronger adsorption corresponded to an inner-sphere surface complex and that the weaker adsorption corresponded to outer-sphere surface complexation. The BET and Langmuir equations showed three types of adsorption mechanisms for the sulfate adsorption on the soil.  相似文献   

14.
This communication reports the formation of complex Langmuir monolayer at the air-water interface by charge transfer types of interaction with the water soluble N-cetyl N,N,N-trimethyl ammonium bromide (CTAB) molecules doped with rosebengal (RB), with the stearic acid (SA) molecules of a preformed SA Langmuir monolayer. The reaction kinetics of the formation of RB-CTAB-SA complex monolayer was monitored by observing the increase in surface pressure with time while the barrier was kept fixed. Completion of interaction kinetics was confirmed by FTIR study. This complex Langmuir films at the air-water interface was transferred onto solid substrates at a desired surface pressure to form multilayered Langmuir-Blodgett films. Spectroscopic characterizations reveal some molecular level interactions as well as formation of microcrystalline aggregates depending upon the molar ratios of CTAB and RB within the complex LB films. Presence of two types of species in the complex LB films was confirmed by fluorescence spectroscopy.  相似文献   

15.
The new synthesized thiomacrocyclic ionophore 4-phenyl-4-sulfide-11-(1-oxodecyl)-1,7-dithia-11-aza-4-phosphacyclotetradecane has proven to form Langmuir and Langmuir-Blodgett (LB) films. This ionophore shows a large affinity for copper(II) ions. Thus, the influence of the subphase composition on the surface pressure-area isotherms has been studied. The LB films have been observed by AFM and the effect of the subphase composition and the deposition surface pressure on the LB films is discussed. AFM image morphology has been correlated to the ionophore molecular structure. Surface pressure-area isotherms and AFM images show that the presence of copper(II) ions has an important role in the film structure.  相似文献   

16.
A direct method of surface silyl modification and simultaneous surfactant removal of mesoporous silica is investigated in its physicochemical details. Twelve different silanes of various functionalities are studied. The method employs an alcohol solution of silanes to allow the simultaneous surfactant/silyl exchange process, which results in a more uniform monolayer coverage of the surface and a higher amount of surface attachments of silane. We vary the solution concentration of silanes to study the effect on loadings. It is found that the variation of the surface loading of the silyl group follows a Langmuir adsorption model closely. The method gives one a well-controlled monolayer coverage of the surface. The loadings are determined by the exchange equilibrium. Fittings of the loading data to Langmuir adsorption isotherms give one the adsorption equilibrium constants and maximum surface loadings. We categorize the silanes into three different groups according to the values of the equilibrium constants and discuss them with respect to molecular structures. We also report on the extensive characterizations of the surface-functionalized mesoporous materials, such as nitrogen adsorptions, X-ray diffraction, 29Si magic-angle spinning NMR, 13C magic-angle spinning NMR, and IR spectroscopy. The method provides one with a convenient and highly controllable approach to the surface functionalization of mesoporous silica.  相似文献   

17.
The capability of self-assembly and molecular recognition of biomolecules is essential for many nanotechnological applications, as in the use of alkyl-modified nucleosides and oligonucleotides to increase the cellular uptake of DNA and RNA. In this study, we show that a lipophilic nucleoside, which is an isomer mixture of 2′-palmitoyluridin und 3′-palmitoyluridin, forms Langmuir monolayers and Langmuir–Blodgett films as a typical amphiphile, though with a smaller elasticity. The nucleoside may be incorporated into dipalmitoyl phosphatidyl choline (DPPC) monolayers that serve as a simplified cell membrane model. The molecular-level interactions between the nucleoside and DPPC led to a remarkable condensation of the mixed monolayer, which affected both surface pressure and surface potential isotherms. The morphology of the mixed monolayers was dominated by the small domains of the nucleoside. The mixed monolayers could be deposited onto solid substrates as a one-layer Langmuir Blodgett film that displayed UV–vis absorption spectra typical of aggregated nucleosides owing to the interaction between the nucleoside and DPPC. The formation of solid films with DNA building blocks in the polar heads may open the way for devices and sensors be produced to exploit their molecular recognition properties.  相似文献   

18.
Molecular interaction is very important for the mechanical properties and application of Langmuir films. In general, fatty acid film is stabilized by certain "subphase ions." In this work, two metal beta-diketonate complexes (M(tmhd)n, tmhd=2,2,6,6-tetramethyl-3,5-heptanedionate) were used as "surface ions" to form stable condensed films with different ratios at the air/water interface. The pi-A isotherms of the mixed films had been measured. The smaller molecular area of the metal beta-diketonate complexes indicated that the metal beta-diketonate complexes form multilayer condensed structures at high pressure at the air/water interface. However, arachidic acid (AA) retained a monolayer structure at high pressure in the mixed system. No considerable phase separations appeared during the compression of the mixed films, which indicated that the mixed films of metal beta-diketonate complexes and AA were miscible and stable. The molecular interaction of the two components in the mixed films was investigated in detail. Mixed systems with the mixing ratio of M(tmhd)n:AA=1:2 were chosen to study the effects of the interaction on the mechanical properties of the mixed films. The molecular interaction between AA and Ce(tmhd)4 is proved to be more significant than that between AA and Sr(tmhd)2, and the pi-A isotherms of the mixed films differ a lot from that of pure AA monolayer. Due to the strong intermolecular interaction, the liquid region disappears in the Ce(tmhd)4/AA mixed films, and dynamic elasticity is improved especially at high surface pressure. On the other hand, the interaction between the AA and the Sr(tmhd)2 is much weaker and the effects of the interaction on the properties (pi-A isotherm and dynamic elasticity) of the mixed films are not so significant, especially at low surface pressure. These results are in accordant with that of the UV spectra analyses.  相似文献   

19.
Pyramidic mesogens forming thermotropic liquid crystal bulk phases were spread in an air-water interface. Pressure surface measurements and polarizing microscopy on the Langmuir films were used to characterize the various states of these pyramidic-like molecules. For two compounds bearing short lateral aliphatic chains, the surface pressure isotherms exhibit a large plateau region corresponding to a metastable monolayer in which the molecules may adopt an 'edge-on' arrangement. The coexistence of multilayered, anisotropic, slowly growing domains with the monolayer in the plateau region has been observed at long time scale. The film area relaxation kinetics at constant surface pressure show the existence of two nucleation mechanisms for the formation of these domains.  相似文献   

20.
The second harmonic generation (SHG) from the insoluble monolayers of bis-(N-ethyl, N-octadecyl)rhodamine perchlorate (RhC18) formed on the surface of sodium dodecylsulfate (SDS) solutions of different concentrations has been studied. An enhancement of the second harmonic response was observed in the mixed films of RhC18/SDS compared to the pure-dye layer. To clarify the origin of the phenomenon, the films were characterized by surface pressure-area isotherm and reflection-absorption spectroscopy studies. The analysis of surface pressure-area isotherms of RhC18/SDS layers showed that incorporated SDS molecules essentially influence the rheological properties of the dye monolayer. The film parameters, such as the molecular surface area, maximum surface pressure, and solid-condensed phase composition, are the functions of SDS bulk concentration. A joint analysis of the SHG results and the reflection-absorption spectra revealed that the structural ordering within films was responsible for the enhancement of the nonlinear optical response, whereas the contributions from the spectral shifts and increased absorption upon aggregate formation are of less importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号