首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiferroic materials have attracted great interest because of their underlying new science and promising applications in data storage and mutual control devices. However, they are still very rare and highly imperative to be developed. Here, we report an organic–inorganic hybrid perovskite trimethylchloromethylammonium chromium chloride (TMCM–CrCl3), showing the coexistence of magnetic and electric orderings. It displays a paraelectric–ferroelectric phase transition at 397 K with an Aizu notation of 6/mFm, and spin-canted antiferromagnetic ordering with a Néel temperature of 4.8 K. The ferroelectricity originates from the orientational ordering of TMCM cations, and the magnetism is from the [CrCl3] framework. Remarkably, TMCM–CrCl3 is the first experimentally confirmed divalent Cr2+-based multiferroic material as far as we know. A new category of hybrid multiferroic materials is pointed out in this work, and more Cr2+-based multiferroic materials will be expectedly developed in the future.

An organic–inorganic hybrid perovskite Trimethylchloromethylammonium chromium(ii) chloride (TMCM–CrCl3) can simultaneously show excellent ferroelectricity and antiferromagnetism, which is the first experimentally confirmed Cr2+-based multiferroic material.  相似文献   

2.
We report four new A-site vacancy ordered thiocyanate double double perovskites, , A = K+, NH4+, CH3(NH3)+ (MeNH3+) and C(NH2)3+ (Gua+), including the first examples of thiocyanate perovskites containing organic A-site cations. We show, using a combination of X-ray and neutron diffraction, that the structure of these frameworks depends on the A-site cation, and that these frameworks possess complex vacancy-ordering patterns and cooperative octahedral tilts distinctly different from atomic perovskites. Density functional theory calculations uncover the energetic origin of these complex orders and allow us to propose a simple rule to predict favoured A-site cation orderings for a given tilt sequence. We use these insights, in combination with symmetry mode analyses, to show that these complex orders suggest a new route to non-centrosymmetric perovskites, and mean this family of materials could contain excellent candidates for piezo- and ferroelectric applications.

Metal thiocyanate hybrid perovskites can have multiple simultaneous complex orderings and combining these orderings appropriately can produce non-centrosymmetric structures.  相似文献   

3.
Two-dimensional hybrid halide perovskites with single chiral and ferroelectricity together with various structural phase transitions provide the possibility for more diverse functional properties. Here, we present a 2D chiral hybrid halide perovskite ferroelectric, [C6H5(CH2)4NH3]2CdCl4 (4PBA−CdCl4, 4PBA=4-phenylbutylamine) that experiences two continuous phase transitions from centrosymmetric triclinic P to polar chiral monoclinic P2 and then to another centrosymmetric tetragonal P4/mmm with increasing temperature, accompanied by symmetry breaking, due to the prominent octahedral distortion and disorder transformation of organic 4PBA cations. In the polar chiral phase, 4PBA−CdCl4 gives a significant CD signal and has a moderate ferroelectric polarization of 0.35 μC/cm2. In addition, 4PBA−CdCl4 occupies a wide band gap of 4.376 eV that is chiefly contributed by the inorganic CdCl6 octahedron. This finding offers an alternative pathway for designing new phase transitions and related physical properties in hybrid halide perovskites and other hybrid crystals.  相似文献   

4.
Cesium‐lead halide perovskites (e.g. CsPbBr3) have gained attention because of their rich physical properties, but their bulk ferroelectricity remains unexplored. Herein, by alloying flexible organic cations into the cubic CsPbBr3, we design the first cesium‐based two‐dimensional (2D) perovskite ferroelectric material with both inorganic alkali metal and organic cations, (C4H9NH3)2CsPb2Br7 ( 1 ). Strikingly, 1 shows a high Curie temperature (Tc=412 K) above that of BaTiO3 (ca. 393 K) and notable spontaneous polarization (ca. 4.2 μC cm?2), triggered by not only the ordering of organic cations but also atomic displacement of inorganic Cs+ ions. To our knowledge, such a 2D bilayered Cs+‐based metal–halide perovskite ferroelectric material with inorganic and organic cations is unprecedented. 1 also shows photoelectric semiconducting behavior with large “on/off” ratios of photoconductivity (>103).  相似文献   

5.
Understanding and controlling molecular recognition mechanisms at a chiral solid interface is a continuously addressed challenge in heterogeneous catalysis. Here, the molecular recognition of a chiral peptide-functionalized metal–organic framework (MOF) catalyst towards a pro-chiral substrate is evaluated experimentally and in silico. The MIL-101 metal–organic framework is used as a macroligand for hosting a Noyori-type chiral ruthenium molecular catalyst, namely (benzene)Ru@MIL-101-NH-Gly-Pro. Its catalytic perfomance toward the asymmetric transfer hydrogenation (ATH) of acetophenone into R- and S-phenylethanol are assessed. The excellent match between the experimentally obtained enantiomeric excesses and the computational outcomes provides a robust atomic-level rationale for the observed product selectivities. The unprecedented role of the MOF in confining the molecular Ru-catalyst and in determining the access of the prochiral substrate to the active site is revealed in terms of highly face-specific host–guest interactions. The predicted surface-specific face differentiation of the prochiral substrate is experimentally corroborated since a three-fold increase in enantiomeric excess is obtained with the heterogeneous MOF-based catalyst when compared to its homogeneous molecular counterpart.

Understanding and controlling molecular recognition mechanisms at a chiral solid interface has been addressed in metal–organic framework catalysts for the asymmetric transfer hydrogenation reaction.  相似文献   

6.
Control over the spatial distribution of components in metal–organic frameworks has potential to unlock improved performance and new behaviour in separations, sensing and catalysis. We report an unprecedented single-step synthesis of multi-component metal–organic framework (MOF) nanoparticles based on the canonical ZIF-8 (Zn) system and its Cd analogue, which form with a core–shell structure whose internal interface can be systematically tuned. We use scanning transmission electron microscopy, X-ray energy dispersive spectroscopy and a new composition gradient model to fit high-resolution X-ray diffraction data to show how core–shell composition and interface characteristics are intricately controlled by synthesis temperature and reaction composition. Particle formation is investigated by in situ X-ray diffraction, which reveals that the spatial distribution of components evolves with time and is determined by the interplay of phase stability, crystallisation kinetics and diffusion. This work opens up new possibilities for the control and characterisation of functionality, component distribution and interfaces in MOF-based materials.

Core–shell metal–organic framework nanoparticles have been synthesised in which the internal interface and distribution of components is found to be highly tunable using simple variations in reaction conditions.  相似文献   

7.
The reactions of dipotassium germacyclopentadienediide with two Group 13 dichlorides, Cp*BCl2 and Cp*AlCl2, yield two structurally different products. In the case of boron a borole complex of germanium(ii) is obtained. The aluminium halide gives an unprecedented neutral germaaluminocene. Both compounds were fully characterised by multinuclear NMR spectroscopy supported by DFT computations. The molecular structure of the germaaluminocene was determined by XRD.

Boron vs. aluminum: the synthesis of a borole complex of Ge(ii) is reported. Changing just the element from boron to aluminum unexpectedly yields an unprecedented neutral germaaluminocene.  相似文献   

8.
The development of synthetic routes to access stable, ultra-small (i.e. <5 nm) lead halide perovskite (LHP) quantum dots (QDs) is of fundamental and technological interest. The considerable challenges include the high solubility of the ionic LHPs in polar solvents and aggregation to form larger particles. Here, we demonstrate a simple and effective host–guest strategy for preparing ultra-small lead bromide perovskite QDs through the use of nano-sized MOFs that function as nucleating and host sites. Cr3O(OH)(H2O)2(terephthalate)3 (Cr-MIL-101), made of large mesopore-sized pseudo-spherical cages, allows fast and efficient diffusion of perovskite precursors within its pores, and promotes the formation of stable, ∼3 nm-wide lead bromide perovskite QDs. CsPbBr3, MAPbBr3 (MA+ = methylammonium), and (FA)PbBr3 (FA+ = formamidinium) QDs exhibit significantly blue-shifted emission maxima at 440 nm, 446 nm, and 450 nm, respectively, as expected for strongly confined perovskite QDs. Optical characterization and composite modelling confirm that the APbBr3 (A = Cs, MA, FA) QDs owe their stability within the MIL-101 nanocrystals to both short- and long-range interfacial interactions with the MOF pore walls.

We demonstrate a simple and effective host–guest strategy for preparing ultra-small lead bromide perovskite QDs through the use of nano-sized MOFs that function as nucleating and host sites.  相似文献   

9.
The precise control over the formation of complex nanostructures, e.g. polyoxometalates (POMs), at the sub-nanoscale is challenging but critical if non-covalent architectures are to be designed. Combining biologically-evolved systems with inorganic nanostructures could lead to sequence-mediated assembly. Herein, we exploit oligopeptides as multidentate structure-directing ligands via metal-coordination and hydrogen bonded interactions to modulate the self-assembly of POM superstructures. Six oligopeptides (GH, AH, SH, G2H, G4H and G5H) are incorporated into the cavities of Molybdenum Blue (MB) POM nanowheels. It is found that the helicity of the nanowheel can be readily switched (Δ to Λ) by simply altering the N-terminal amino acid on the peptide chain rather than their overall stereochemistry. We also reveal a delicate balance between the Mo-coordination and the hydrogen bonds found within the internal cavity of the inorganic nanowheels which results in the sequence mediated formation of two unprecedented asymmetrical nanowheel frameworks: {Mo122Ce5} and {Mo126Ce4}.

Peptide sequence can be used to control the self-assembly and structures of nanoscale molybdenum blue polyoxometalate (POM) wheel-shaped clusters.  相似文献   

10.
The chemical instability of metal halide perovskite materials can be ascribed to their unique properties of softness, in which the chemical bonding between metal halide octahedral frameworks and cations is the weak ionic and hydrogen bonding as in most perovskite structures. Therefore, various strategies have been developed to stabilize the cations and metal halide frameworks, which include incorporating additives, developing two-dimensional perovskites and perovskite nanocrystals, etc. Recently, the important role of utilizing steric hindrance for stabilizing and passivating perovskites has been demonstrated. In this perspective, we summarize the applications of steric hindrance in manipulating and stabilizing perovskites. We will also discuss how steric hindrance influences the fundamental kinetics of perovskite crystallization and film formation processes. The similarities and differences of the steric hindrance between perovskite solar cells and perovskite light emission diodes are also discussed. In all, utilizing steric hindrance is a promising strategy to manipulate and stabilize metal halide perovskites for optoelectronics.

Manipulation on steric hindrance can influence the fundamental kinetics of perovskite crystallization and film formation, therefore stabilizing and passivating perovskite structures, and promoting the commercialization of stable perovskite devices.  相似文献   

11.
Double perovskite La2NiMnO6 thin film was successfully prepared on (001)-oriented 0.7 wt% Nb-doped SrTiO3 single crystal substrate by chemical solution deposition method. The microstructures as well as properties were investigated. The results show that the derived thin film is an admixture of Ni/Mn ordering, and two ferromagnetic transitions are observed with Curie temperatures of 289 and 110 K, respectively. A crossover from positive to negative magnetodielectric effect is observed near room temperature. The success preparation of La2NiMnO6 thin film by chemical solution deposition will provide a useful method to deposit double perovskite multiferroic thin films with low-cost.  相似文献   

12.
Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur-chiral single-component organic ferroelectric crystals, Rs-tert-butanesulfinamide (Rs-tBuSA) and Ss-tert-butanesulfinamide (Ss-tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral-polar point group 2 (C2) and exhibit mirror-image relationships. They undergo high-temperature 432F2-type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432F2-type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects.  相似文献   

13.
Although biological imaging is mostly performed in aqueous media, it is hardly ever considered that water acts as a classic fluorescence quencher for organic fluorophores. By investigating the fluorescence properties of 42 common organic fluorophores recommended for biological labelling, we demonstrate that H2O reduces their fluorescence quantum yield and lifetime by up to threefold and uncover the underlying fluorescence quenching mechanism. We show that the quenching efficiency is significantly larger for red-emitting probes and follows an energy gap law. The fluorescence quenching finds its origin in high-energy vibrations of the solvent (OH groups), as methanol and other linear alcohols are also found to quench the emission, whereas it is restored in deuterated solvents. Our observations are consistent with a mechanism by which the electronic excitation of the fluorophore is resonantly transferred to overtones and combination transitions of high-frequency vibrational stretching modes of the solvent through space and not through hydrogen bonds. Insight into this solvent-assisted quenching mechanism opens the door to the rational design of brighter fluorescent probes by offering a justification for protecting organic fluorophores from the solvent via encapsulation.

Overtones and combinations of O–H vibrations in the solvent efficiently quench red-emitting fluorophores by resonant energy transfer.  相似文献   

14.
Vicinal trifluoromethyl azides have widespread applications in organic synthesis and drug development. However, their preparation is generally limited to transition-metal-catalyzed three-component reactions. We report here a simple and metal-free method that rapidly provides these building blocks from abundant alkenes and trifluoromethanesulfonyl azide (N3SO2CF3). This unprecedented two-component reaction employs readily available N3SO2CF3 as a bifunctional reagent to concurrently incorporate both CF3 and N3 groups, which avoids the use of their expensive and low atom economic precursors. A wide range of functional groups, including bio-relevant heterocycles and amino acids, were tolerated. Application of this method was further demonstrated by scale-up synthesis (5 mmol), product derivatization to CF3-containing medicinal chemistry motifs, as well as late-stage modification of natural product and drug derivatives.

A two-component and metal-free azidotrifluoromethylation of alkenes is realized using readily synthesized trifluoromethanesulfonyl azide (N3SO2CF3) as a bifunctional reagent for both CF3 and N3 groups.  相似文献   

15.
Introducing heterovalent cations at the octahedral sites of halide perovskites can substantially change their optoelectronic properties. Yet, in most cases, only small amounts of such metals can be incorporated as impurities into the three-dimensional lattice. Here, we exploit the greater structural flexibility of the two-dimensional (2D) perovskite framework to place three distinct stoichiometric cations in the octahedral sites. The new layered perovskites AI4[CuII(CuIInIII)0.5Cl8] (1, A = organic cation) may be derived from a CuI–InIII double perovskite by replacing half of the octahedral metal sites with Cu2+. Electron paramagnetic resonance and X-ray absorption spectroscopy confirm the presence of Cu2+ in 1. Crystallographic studies demonstrate that 1 represents an averaging of the CuI–InIII double perovskite and CuII single perovskite structures. However, whereas the highly insulating CuI–InIII and CuII perovskites are colorless and yellow, respectively, 1 is black, with substantially higher electronic conductivity than that of either endmember. We trace these emergent properties in 1 to intervalence charge transfer between the mixed-valence Cu centers. We further propose a tiling model to describe how the Cu+, Cu2+, and In3+ coordination spheres can pack most favorably into a 2D perovskite lattice, which explains the unusual 1 : 2 : 1 ratio of these cations found in 1. Magnetic susceptibility data of 1 further corroborate this packing model. The emergence of enhanced visible light absorption and electronic conductivity in 1 demonstrates the importance of devising strategies for increasing the compositional complexity of halide perovskites.

A novel 2D halide perovskite with stoichiometric quantities of Cu+, Cu2+, and In3+ in the inorganic slabs shows emergent properties not seen in CuII or CuI–InIII perovskites, including enhanced visible-light absorption and electronic conductivity.  相似文献   

16.
Tin halide perovskites are promising candidates for lead-free photovoltaic and optoelectronic materials, but not all of them have been well characterized. It is essential to determine how the bulk photophysical properties are correlated with their structures at both short and long ranges. Although CsSnCl3 is normally stable in the cubic perovskite structure only above 379 K, it was prepared as a metastable phase at room temperature. The transition from the cubic to the monoclinic phase, which is the stable form at room temperature, was tracked by solid-state 133Cs NMR spectroscopy and shown to take place through a first-order kinetics process. The complete solid solution CsSn(Cl1−xBrx)3 (0 ≤ x ≤ 1) was successfully prepared, exhibiting cubic perovskite structures extending between the metastable CsSnCl3 and stable CsSnBr3 end-members. The NMR spectra of CsSnBr3 samples obtained by three routes (high-temperature, mechanochemical, and solvent-assisted reactions) show distinct chemical shift ranges, spin-lattice relaxation parameters and peak widths, indicative of differences in local structure, defects and degree of crystallinity within these samples. Variable-temperature 119Sn spin-lattice relaxation measurements reveal spontaneous mobility of Br atoms in CsSnBr3. The degradation of CsSnBr3, exposed to an ambient atmosphere for nearly a year, was monitored by NMR spectroscopy and powder X-ray diffraction, as well as by optical absorption spectroscopy.

Unravelling the atomic-level chemical structure, slow phase conversion or degradation pathways and rapid halogen hopping of cesium tin(ii) halide perovskites using solid-state 119Sn and 133Cs NMR spectroscopy.  相似文献   

17.
Cesium lead iodide (CsPbI3) perovskite is a promising photovoltaic material with a suitable bandgap and high thermal stability. However, it involves complicated phase transitions, and black-phase CsPbI3 is mostly formed and stabilized at high temperatures (200–360 °C), making its practical application challenging. Here, for the first time, we have demonstrated a feasible route for growing high quality black-phase CsPbI3 thin films under mild conditions by using a neutral molecular additive of 4(1H)-pyridinethione (4-PT). The resulting CsPbI3 thin films are morphologically uniform and phase stable under ambient conditions, consisting of micron-sized grains with oriented crystal stacking. With a range of characterization experiments on intermolecular interactions, the electron-enriched thione group in 4-PT is distinguished to be critical to enabling a strong Pb–S interaction, which not only influences the crystallization paths, but also stabilizes the black-phase CsPbI3via crystal surface functionalization. The 4-PT based CsPbI3 achieves 13.88% power conversion efficiency in a p–i–n structured device architecture, and encapsulated devices can retain over 85% of their initial efficiencies after 20 days of storage in an ambient environment, which are the best results among fully low-temperature processed CsPbI3 photovoltaics.

A neutral molecular additive of 4(1H)-pyridinethione (4-PT) is used for growing high quality black-phase CsPbI3 thin films at low temperatures.  相似文献   

18.
Organic radicals are important species with single electrons. Because of their open-shell structure, they are widely used in functional materials, such as spin probes, magnetic materials and optoelectronic materials. Owing to the high reactivity of single electrons, they often serve as a key intermediate in organic synthesis. Therefore, tuning the stability of radicals is crucial for their functions. Herein, we summarize covalent and non-covalent approaches to tune the stability of organic radicals through steric effects and tuning the delocalization of spin density. Covalent approaches can tune the stability of radicals effectively and non-covalent approaches benefit from dynamicity and reversibility. It is anticipated that the further development of covalent and non-covalent approaches, as well as the interplay between them, may push the fields forward by enriching new radical materials and radical mediated reactions.

Covalent and non-covalent approaches to tune the stability of organic radicals through steric effects and the delocalization of spin density.  相似文献   

19.
Heterocyclic orifices in cage-opened fullerene derivatives are regarded as potential ligands toward metals or ions, being reminiscent of truncated fullerenes as a hypothetical class of macrocycles with spherical π-conjugation. Among a number of cage-opened examples reported thus far, the coordination ability and dynamic behavior in solution still remained unclear due to difficulties in structural determination with multiple coordination sites on the macrocycles. Herein, we present the detailed solution dynamics of a cage-opened C60 derivative bearing a diketo bis(hemiketal) moiety in the presence of alkali metal ions. The NMR spectroscopy disclosed the coordination behavior which is identified as a two-step process with a 1 : 2 stoichiometry. Upon coordination to the Li+ ion, the macrocycle largely varies its properties, i.e., increased absorption coefficients in the visible region due to weakly-allowed charge transfer transitions as well as the inner potential field from neutral to positive by the charge delocalization along with the spherical π-surface. The Li+-complexes formed in situ underwent unprecedented selective dehydroxyhydrogenation under high-pressure conditions. These findings would facilitate further studies on fullerene-based macrocycles as metal sensors, bulky ligands in organic reactions, and ion carriers in batteries and biosystems.

A fullerene-based Lewis-basic macrocyclic ligand underwent complexation with alkali-metal ions in 1 : 1 and 1 : 2 fashions, resulting in considerable perturbation to absorption properties as well as the potential surface inside the cage.  相似文献   

20.
The remarkable reducibility of diazaphosphinanes has been extensively applied in various hydrogenations, based on and yet limited by their well-known hydridic reactivity. Here we exploited their unprecedented radical reactivity to implement hydrodehalogenations and cascade cyclizations originally inaccessible by hydride transfer. These reactions feature a broad substrate scope, high efficiency and simplicity of manipulation. Mechanistic studies suggested a radical chain process in which a phosphinyl radical is generated in a catalytic cycle via hydrogen-atom transfer from diazaphosphinanes. The radical reactivity of diazaphosphinanes disclosed here differs from their well-established hydridic reactivity, and hence, opens a new avenue for diazaphosphinane applications in organic syntheses.

Unprecedented radical reactivity of diazaphosphinanes was explored to implement efficient hydrodehalogenations and cascade cyclizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号