首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 395 毫秒
1.
The reaction of the digold(I) diacetylide [(AuCCCH2OC6H4)2CMe2] with diphosphane ligands can lead to formation of either macrocyclic ring complexes or [2]catenanes by self-assembly. This gives an easy route to rare organometallic [2]catenanes, and the effect of the diphosphane ligand on the selectivity of self-assembly is studied. With diphosphane ligands Ph2P(CH2)xPPh2, the simple ring complex [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)] is formed selectively when x = 2, but the [2]catenanes [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)]2 are formed when x = 4 or 5. When x = 3, a mixture of the simple ring and [2]catenane is formed, along with the "double-ring" complex, [Au4[(CCCH2OC6H4)2CMe2]2(Ph2P(CH2)3PPh2)2] and a "hexamer" Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)3PPh2)]6] whose structure is not determined. A study of the equilibria between these complexes by solution NMR techniques gives insight into the energetics and mechanism of [2]catenane formation. When the oligomer [(AuCCCH2OC6H4)2CMe2] was treated with a mixture of two diphosphane ligands, or when two [2]catenane complexes [[Au2[(CCCH2OC6H4)2CMe2](diphosphane)]2] were allowed to equilibrate, only the symmetrical [2]catenanes were formed. The diphosphanes Ph2PCCPPh2, trans-[Ph2PCH=CHPPh2] and (Ph2PC5H4)2Fe give the corresponding ring complexes [Au2[(CCCH2OC6H4)2CMe2](diphosphane)], and the chiral, unsymmetrical diacetylide [Au2[(CCCH2OC6H4C(Me)(CH2CMe2)C6H3OCH2CC)] gives macrocyclic ring complexes with all diphosphane ligands Ph2P(CH2)xPPh2 (x = 2-5).  相似文献   

2.
A family of triethanolamine complexes of titanium with varying metal/ligand ratios have been prepared from reactions of titanium tetraisopropoxide with triethanolamine. Three nonhydrolytic products, having essentially all isopropoxide ligands substituted by triethanolamine, were prepared as hygroscopic, glassy solids. Crystals of two hexameric titanatrane partial hydrolysis analogues [Ti3(mu 2-O)((HOCH2CH2)2NCH2CH2O)(OCH2CH2)2(mu 2-OCH2CH2)N)2(OCH2CH2)(mu 2- OCH2CH2)2N)]2 (1), and [Ti3(mu 2-O)(OCH(CH3)2)((OCH2CH2)2(mu 2-OCH2CH2)N)2(OCH2CH2)(mu 2- OCH2CH2)2N)]2 (2) were isolated and structurally characterized. The structures consist of a central core of two oxo-bridged dititanatranes (TEA)TiOTi(TEA) (TEAH3 = triethanolamine) with the nonhydrolytic residue (TEA)Ti(TEAH2) included as an adduct in (1), analogously to (TEA)Ti(OPri) in (2).  相似文献   

3.
Reaction of ArNCO with syn-[MoO(mu-O)(S2CNR2)]2 or syn-[MoO(mu-NAr)(S2CNR2)]2 at 110 degrees C leads to the facile formation of bridging ureato complexes [Mo2(NAr)2(mu-NAr){mu-ArNC(O)NAr}(S2CNR2)2](Ar = Ph, p-tol; R = Me, Et, Pr), formed upon substitution of all oxo ligands and addition of a further equivalent of isocyanate across one of the bridging imido ligands. Related sulfido-bridged complexes [Mo2(NAr)2(mu-S){mu-ArNC(O)NAr}(S2CNR2)2] have been prepared from syn-[Mo2O2(mu-O)(mu-S)(S2CNR2)2]. When reactions with syn-[MoO(mu-NAr)(S2CNEt2)]2 were followed by NMR, intermediates were observed, being formulated as [Mo2O(NAr)(mu-NAr){mu-ArNC(O)NAr}(S2CNEt2)2], which at higher temperatures convert to the fully substituted products. A crystallographic study of [Mo2(N-p-tol)2(mu-S){mu-p-tolNC(O)N-p-tol}(S2CNPr2)2] reveals that the bridging ureato ligand is bound asymmetrically to the dimolybdenum centre-molybdenum-nitrogen bonds trans to the terminal imido ligands being significantly elongated with respect to those cis-a result of the trans-influence of the terminal imido ligands. This trans-influence also leads to a trans-effect, whereby the exchange of aryl isocyanates can occur in a regioselective manner. This is followed by NMR studies and confirmed by a crystallographic study of [Mo2(N-p-tol)2(mu-N-p-tol){mu-p-tolNC(O)NPh}(S2CNEt2)2]--the PhNCO occupying the site trans to the terminal imido ligands. Ureato complexes also react with PhNCS, initially forming [Mo2(NAr)2(mu-S){mu-ArNC(O)NAr}(S2CNR2)2], resulting from exchange of the bridging imido ligand for sulfur, together with small amounts of [Mo2(NAr)2(mu-S)(mu-S2)(S2CNEt2)2], containing bridging sulfide and disulfide ligands. The ureato complexes [Mo2(NAr)2(mu-S){mu-ArNC(O)NAr}(S2CNR2)2] react further with PhNCS to give [Mo2(NAr)2(mu-S)2(S2CNR2)2]n (n = 1, 2), which exist in a dimer-tetramer equilibrium. In order to confirm these results crystallographic studies have been carried out on [Mo2(N-p-tol)2(mu-S)(mu-S2)(S2CNEt2)2] and [Mo2(N-p-tol)2(mu-S)2(S2CNPr2)2]2.  相似文献   

4.
Acid-catalysed hydrolysis of [CH2[(Sn(Ph2)CH2Si(OiPr)Me2]2] followed by subsequent reaction with mercuric chloride in acetone afforded the novel silicon- and tin-containing eight-membered ring [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] in good yield, the crystal structure of which is reported. 119Sn NMR and X-ray studies indicate that [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] acts as a bidentate Lewis acid towards chloride ions exclusively forming the 1:1 complex [(Ph3P)2N]+[cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2OCl]- upon addition of [(Ph3P)2N]+Cl- . Also reported are the synthesis and structure of [K(dibenzo[18]crown-6)]+[cyclo-CH2(Sn(Cl2)CH2Si(Me2)]2OF]-, the first completely characterised organostannate with a C2SnCl2F- substituent pattern. No ring-opening polymerisation could be achieved for [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] or for its perphenylated derivative [cyclo-CH2[Sn(Ph2)CH2Si(Me2)]2O]. The reaction of [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] with Me3O+BF4- gave the tin-containing fluorosilane [CH2[Sn(Cl2)CH2Si(F)Me2]2], in which the Si-F bond is activated by intermolecular Si-F...Sn interactions in the solid state.  相似文献   

5.
采用量子化学计算方法研究了H2O2 氧化N2 生成N2O 和H2O 的机理.结果发现, H2O2 氧化N2 先通过1 个四元环过渡态形成中间体H2N2O2 分子,H2N2O2 再通过一个五元环过渡态形成N2O和H2O.根据计算得到的每步反应的活化能,得知H2O2 氧化N2 生成中间体H2N2O2 分子是整个反应的控制步骤.  相似文献   

6.
Gao W  Liu J  Akermark B  Sun L 《Inorganic chemistry》2006,45(23):9169-9171
The reaction of [Fe2(CO)6(mu-SCH2)2NCH2CH2N(mu-SCH2)2Fe2(CO)6] (1) with 1,2-bis(diphenylphosphino)ethane in the presence of Me3NO.2H2O affords two structurally different metallomacromolecules: a dimer of the type [{Fe2(CO)5(mu-SCH2)2NCH2CH2N(mu-SCH2)2Fe2(CO)5}(Ph2PCH2)2] (2) and a tetramer species containing eight iron centers with an overall formula of [{Fe2(CO)6(mu-SCH2)2NCH2CH2N(mu-SCH2)2Fe2(CO)5}2(Ph2PCH2)2] (3). Their structures have been determined by X-ray crystallography, showing one macrocyclic complex (2) and one linear complex (3). Electrochemical hydrogen evolution catalyzed by these two complexes with ca. 80-90 single-run turnovers is observed, indicating good potential as catalysts for future applications.  相似文献   

7.
A new series of complexes with the general formula (n-Bu4N)2[M2O2(micro-Q)2(dmit)2] (where M = Mo, W; Q = S, Se; dmit = 1,3-dithiole-2-thione-4,5-dithiolate) have been prepared. Fragmentation of the trinuclear cluster (n-Bu4N)2[Mo3(micro3-S)(micro-S2)3(dmit)3] in the presence of triphenylphosphine (PPh3) gives the dinuclear compound (n-Bu4N)2[Mo2O2(micro-S)2(dmit)2] [(n-Bu4N)2[2]], which is formed via oxidation in air from the intermediate (n-Bu4N)2[Mo3(micro3-S)(micro-S)3(dmit)3] [(n-Bu4N)2[1]] complex. Ligand substitution of the molybdenum sulfur bridged [Mo2O2(micro-S)2(dimethylformamide)6]2+ dimer with the sodium salt of the dmit dithiolate also affords the dianionic compound (n-Bu4N)2[2]. The whole series, (n-Bu4N)2[Mo2O2(micro-Se)2(dmit)2] [(n-Bu4N)2[3]], (n-Bu4N)2[W2O2(micro-S)2(dmit)2] [(n-Bu4N)2[4]], (n-Bu4N)2[W2O2(micro-Se)2(dmit)2] [(n-Bu4N)2[5]], and (n-Bu4N)2[Mo2O2(micro-S)2(dmid)2] [(n-Bu4N)2[6]; dmid = 1,3-dithiole-2-one-4,5-dithiolate], has been synthesized by the excision of the polymeric (Mo3Q7Br4)x phases with PPh3 or 1,2-bis(diphenylphosphanyl)ethane in acetonitrile followed by the dithiolene incorporation and further degradation in air. Direct evidence of the presence of the intermediates with the formula [M3Q4(dmit)3]2- (M = Mo, W; Q = S, Se) has been obtained by electrospray ionization mass spectrometry. The crystal structures of (n-Bu4N)2[1], (PPh4)2[Mo2O2(micro-S)2(dmit)2] [(PPh4)2[2]; PPh4 = tetraphenylphosphonium], (n-Bu4N)2[2], (n-Bu4N)2[4], (PPh4)2[W2O2(micro-Se)2(dmit)2] [(PPh4)2[5]], and (n-Bu4N)2[6] have been determined. A detailed study of the gas-phase behavior for compounds (n-Bu4N)2[2-6] shows an identical fragmentation pathway for the whole family that consists of a partial breaking of the two dithiolene ligands followed by the dissociation of the dinuclear cluster.  相似文献   

8.
The use of di-2-pyridyl ketone oxime, (py)2CNOH, in manganese carboxylate chemistry has been investigated. Using a variety of synthetic routes complexes [Mn(O2CPh)2{(py)2CNOH}2].0.25H2O (1.0.25H2O), Mn4(O2CPh)2{(py)2CO2}2{(py)2CNO}2Br2].MeCN (2.MeCN), [Mn4(O2CPh)2{(py)2CO2}2{(py)2CNO}2Cl(2)].2MeCN (3.2MeCN), [Mn4(O2CMe)2{(py)2CO2}2{(py)2CNO}2Br2].2MeCN (4.2MeCN), [Mn4(O2CMe)2{(py)2CO2}2{(py)2CNO}2(NO3)2].MeCN.H2O (5.MeCN.H2O) and [Mn2(O2CCF3)2(hfac)2{(py)2CNOH}2] (6) have been isolated in good yields. Remarkable features of the reactions are the in situ transformation of an amount of (py)2CNOH to yield the coordination dianion, (py)2CO2(2-), of the gem-diol derivative of di-2-pyridyl ketone in 2-5, the coordination of nitrate ligands in 5 although the starting materials are nitrate-free and the incorporation of CF3CO2- ligands 6 in which was prepared from Mn(hfac)(2).3H2O (hfac(-)= hexafluoroacetylacetonate). Complexes 2-4 have completely analogous molecular structures. The centrosymmetric tetranuclear molecule contains two MnII and two MnIII six-coordinate ions held together by four mu-oxygen atoms from the two 3.2211 (py)2CO2(2-) ligands to give the unprecedented [MnII(mu-OR)MnIII(mu-OR)2MnIII(mu-OR)MnII]6+ core consisting of a planar zig-zag array of the four metal ions. Peripheral ligation is provided by two 2.111 (py)2CNO-, two 2.11 PhCO2- and two terminal Br- ligands. The overall molecular structure 5 of is very similar to that of 2-4 except for the X- being chelating NO3-. A tentative reaction scheme was proposed that explains the observed oxime transformation and nitrate generation. The CF3CO2- ligand is one of the decomposition products of the hfac- ligand. The two Mn(II) ions are bridged by two neutral (py)2CNOH ligands which adopt the 2.0111 coordination mode. A chelating hfac- ligand and a terminal CF3CO2- ion complete a distorted octahedral geometry at each metal ion. The CV of complex reveals irreversible reduction and oxidation processes. Variable-temperature magnetic susceptibility studies in the 2-300 K range for the representative tetranuclear clusters 2 and 4 reveal weak antiferromagnetic exchange interactions, leading to non-magnetic ST = 0 ground states. Best-fit parameters obtained by means of the program CLUMAG and applying the appropriate Hamiltonian are J(Mn(II)Mn((III))=-1.7 (2), -1.5 (4) cm(-1) and J(Mn(III)Mn(III))=-3.0 (2, 4) cm(-1).  相似文献   

9.
Functionalized o-carboranes are interesting ligands for transition metals. Reaction of LiC2B10H11 with Me2NCH2CH2Cl in toluene afforded 1-Me2NCH2CH2-1,2-C2B10H11 (1). Treatment of 1 with 1 equiv. of n-BuLi gave [(Me2NCH2CH2)C2B10H10]Li ([1]Li), which was a very useful synthon for the production of bisfunctional o-carboranes. Reaction of [1]Li with RCH2CH2Cl afforded 1-Me2NCH2CH2-2-RCH2CH2-1,2-C2B10H10 (R = Me2N (2), MeO (3)). 1 and 2 were also prepared from the reaction of Li2C2B10H10 with excess Me2NCH2CH2Cl. Treatment of [1]Li with excess MeI or allyl bromide gave the ionic salts, [1-Me3NCH2CH2-2-Me-1,2-C2B10H10][I] (4) and [1-Me2N(CH2=CHCH2)CH2CH2-2-(CH2=CHCH2)-1,2-C2B10H10][Br] (6), respectively. Interaction of [1]Li with 1 equiv. of allyl bromide afforded 1-Me2NCH2CH2-2-(CH2=CHCH2)-1,2-C2B10H10 (5). Treatment of [1]Li with excess dimethylfulvene afforded 1-Me2NCH2CH2-2-C5H5CMe2-1,2-C2B10H10 (7). Interaction of [1]Li with excess ethylene oxide afforded an unexpected product 1-HOCH2CH2-2-(CH2=CH)-1,2-C2B10H10 (8). 1 and 3 were conveniently converted into the corresponding deborated compounds, 7-Me2NHCH2CH2-7,8-C2B9H11 (9) and 7-Me2NHCH2CH2-8-MeOCH2CH2-7,8-C2B9H10 (10), respectively, in MeOH-MeOK solution. All of these compounds were characterized by various spectroscopic techniques and elemental analyses. The solid-state structures of 4 and 6-10 were confirmed by single-crystal X-ray analyses.  相似文献   

10.
R2BiOH (1) [R = 2-(Me2NCH2)C6H4] and (R2Bi)2O (2) are formed by hydrolysis of R2BiCl with KOH. Single crystals of were obtained by air oxidation of (R2Bi)2. The reaction of R2BiCl and Na2CO3 leads to (R2Bi)2CO3 (3). 3 is also formed by the absorption of CO2 from the air in solutions of 1 or 2 in diethyl ether or toluene. (R2Bi)2S (4) is obtained from R2BiCl and Na2S or from (R2Bi)2 and S8. Exchange reactions between R2BiCl and KBr or NaI give R2BiX [X = Br (5), I (6)]. The reaction of RBiCl2 (7) with Na2S and [W(CO)5(THF)] gives cyclo-(RBiS)2[W(CO)5]2 (8). cyclo-(R'BiS)2 (9) [R' = 2,6-(Me2NCH2)2C6H3] is formed by reaction of R'BiCl2 and Na2S. The structures of were determined by single-crystal X-ray diffraction.  相似文献   

11.
Reduction of Zn(2)(mu-eta(2)-Me(2)Si(NDipp)(2))(2) with 4 equiv. of KC(8) resulted in a dramatic structural transformation into [(eta(2)-Me(2)Si(NDipp)(2))ZnZn(eta(2)-Me(2)Si(NDipp)(2))](2-) featuring a Zn-Zn bond instead of [Zn(2)(micro-eta(2)-Me(2)Si(NDipp)(2))(2)](2-); the mechanism of the observed structural transformations arising from the Zn-Zn bond formation involving the intermediate of [Zn(2)(mu-eta(2)-Me(2)Si(NDipp)(2))(2)](-) was elucidated by elaborate computations.  相似文献   

12.
The new polycyclic borazines B(2){1,2-N(2)C(6)H(4)}(2){B(2)(NMe(2))(2)}(2), B(2){1,8-N(2)naph}(2){B(2)(NMe(2))(2)}(2) and B(2)(NPh)(4){B(2)(NMe(2))(2)}(2) have been prepared from diborate(4) anions and two equivalents of B(2)Cl(2)(NMe(2))(2) and have been structurally characterised. Aspects of their structure and bonding are discussed and comparison made with corresponding polycyclic aromatic hydrocarbons.  相似文献   

13.
郭勇  陈庆云 《化学学报》2001,59(10):1722-1729
二氟二碘甲烷(CF2I2,1)与乙烯基乙醚和Na2S2O4在DMSO和乙醇的混合溶剂中反应得3,3-二氟-3-碘丙醛的乙缩醛[ICF2CH2CH(OEt)2](3).3在锌粉的作用下发生偶联反应生成二缩醛[(EtO)2CHCH2CF2CF2CH2CH(OEt)2](5)。缩醛3或5与烯醇硅醚在SnCl4作用下发生交叉偶联反应。3在锌粉或保险粉的引下与烯醇硅醚发生加成反应。3和5分别转化成硫缩醛ICF2CH2CH(SR)2(13),(RS)2CHCH2CF2CF2CH2CH(SR)2(14)或O,S-缩醛。13消HI得1,1-二氟乙烯衍生物。  相似文献   

14.
The organoaluminium and -gallium hydroxylamides (Me2GaONMe2)2, (tBu2AlONMe2)2, (tBu2GaONMe2)2 and (Me2AlONiPr2)2 have been prepared by the reaction of the hydroxylamines Me2NOH and iPr2NOH with the trialkylmetal compounds trimethylgallium, tri-tbutylaluminium and tri-tbutylgallium, respectively. All compounds have been characterised by NMR spectroscopy (1H, 13C, 15N, 17O and 27Al), by mass spectrometry and elemental analyses. The crystal structures of the four compounds have been determined, showing that they all form dimers but with different modes of aggregation: (Me2GaONMe2)2 has a Ga2O2N2 six-membered ring, (tBu2AlONMe2)2 and (Me2AlONiPr2)2 have Al2O2 four-membered rings, (tBu2GaONMe2)2 forms a Ga2O2N five-membered ring.  相似文献   

15.
Lithium complexes bearing dianionic amine bis(phenolate) ligands are described. Reactions of ligand precursors H(2)O(2)NN(Me), H(2)O(2)NN(Py) or H(2)O(2)NO(Me) [H(2)O(2)NN(Me)=Me(2)NCH(2)CH(2)N-(CH(2)-2-HO-3,5-C(6)H(2)((t)Bu)(2))(2); H(2)O(2)NN(Py)=(2-C(5)H(4)N)CH(2)N-(CH(2)-2-HO-3,5-C(6)H(2)((t)Bu)(2))(2); H(2)O(2)NO(Me)=MeOCH(2)CH(2)N-(CH(2)-2-HO-3,5-C(6)H(2)((t)Bu)(2))(2)] with 2.2 molar equivalents of (n)BuLi in diethylether afford (Li(2)O(2)NN(Me))(2) (1), (Li(2)O(2)NN(Py))(2) (2) and (Li(2)O(2)NO(Me))(2) (3) as tetra-nuclear lithium complexes. The crystalline solids of partially hydrolyzed product, (LiO(HO)NN(Py)) (4), were obtained from recrystallization of 2 in diethylether solution for three months. The synthesis of (LiO(HO)NO(Me))(2) (5) was carried out at ambient temperature by carefully layering a solution of water in hexane on top of a solution of 3 in Et(2)O. Crystalline solids of were obtained after two months. Molecular structures are reported for compounds 1, 3, 4 and 5. Compounds 1-3 show excellent catalytic activities toward the ring-opening polymerization of L-lactide in the presence of benzyl alcohol.  相似文献   

16.
Dinuclear Ti(IV), Zr(IV), and Ce(IV) oxo and peroxo complexes containing the imidodiphosphinate ligand [N(i-Pr(2)PO)(2)](-) have been synthesized and structurally characterized. Treatment of Ti(O-i-Pr)(2)Cl(2) with KN(i-Pr(2)PO)(2) afforded the Ti(IV) di-μ-oxo complex [Ti{N(i-Pr(2)PO)(2)}(2)](2)(μ-O)(2) (1) that reacted with 35% H(2)O(2) to give the peroxo complex Ti[N(i-Pr(2)PO)(2)](2)(η(2)-O(2)) (2). Treatment of HN(i-Pr(2)PO)(2) with Zr(O-t-Bu)(4) and Ce(2)(O-i-Pr)(8)(i-PrOH)(2) afforded the di-μ-peroxo-bridged dimers [M{N(i-Pr(2)PO)(2)}(2)](2)(μ-O(2))(2) [M = Zr (3), Ce (4)]. 4 was also obtained from the reaction of Ce[N(i-Pr(2)PO)(2)](3) with 35% H(2)O(2). Treatment of (Et(4)N)(2)[CeCl(6)] with 3 equiv of KN(i-Pr(2)PO)(2) afforded Ce[N(i-Pr(2)PO)(2)](3)Cl (5). Reaction of (Et(4)N)(2)[CeCl(6)] with 2 equiv of KN(i-Pr(2)PO)(2) in acetonitrile, followed by treatment with Ag(2)O, afforded the μ-oxo-bridged complex [Ce{N(i-Pr(2)PO)(2)}Cl](2)[μ-N(i-Pr(2)PO)(2)](2)(μ-O) (6). 6 undergoes ligand redistribution in CH(2)Cl(2) in air to give 5. The solid-state structures of [K(2){N(i-Pr(2)PO)(2)}(2)(H(2)O)(8)](n) and complexes 1-6 have been determined.  相似文献   

17.
Yang Z  Ma X  Roesky HW  Yang Y  Magull J  Ringe A 《Inorganic chemistry》2007,46(17):7093-7096
A series of novel aluminum heterobimetallic selenides were reported. The reaction of LAl(SeH)2 (1) with LiN(SiMe3)2 resulted in the formation of [LAl(SeLi)2(THF)2] (2) (L = HC(CMeNAr)2, Ar = 2,6-iPr2C6H3). Compound 2 reacted with Me2GeCl2, Ph2GeCl2, Cp2TiCl2, and Cp2ZrCl2, respectively, to produce LAl(mu-Se)2GeMe2 (3), LAl(mu-Se)2GePh2 (4), LAl(mu-Se)2TiCp2 (5), and LAl(mu-Se)2ZrCp2 (6) in moderate yields. Compounds 2-6 were characterized by elemental analysis, NMR, and electron impact-MS. The X-ray single-crystal structure of 3 is reported and confirms the spirocyclic arrangement of the aluminum atom within the six-membered AlN2C3 and four-membered AlSe2Ge rings.  相似文献   

18.
杂元素冠醚研究 Ⅶ.多硒杂冠醚及其钯配合物的合成   总被引:2,自引:0,他引:2  
李卫平  刘秀芳  徐汉生 《化学学报》1994,52(11):1082-1087
在碱性条件下,1,2-二硒杂环戊烷被硼氢化钠还原成双硒负离子,然后和二醇的二对甲苯磺酸酯或二氯化物缩合成环,得到六个二硒杂冠醚(2a,3a,4a,5a,6a,7a)和七个四硒杂冠醚(2b,3b,4b,5b,6b,7b,8b).同时,通过5a,5b与二氯化钯反应,合成了两个钯配合物,并讨论了其配位特征  相似文献   

19.
A series of new diiron azadithiolate (ADT) complexes (1-8), which could be regarded as the active site models of [FeFe]hydrogenases, have been synthesized starting from parent complex [(μ-SCH(2))(2)NCH(2)CH(2)OH]Fe(2)(CO)(6) (A). Treatment of A with ethyl malonyl chloride or malonyl dichloride in the presence of pyridine afforded the malonyl-containing complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(6) (1) and [Fe(2)(CO)(6)(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)CH(2) (2). Further treatment of 1 and 2 with PPh(3) under different conditions produced the PPh(3)-substituted complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(5)(PPh(3)) (3), [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(4)(PPh(3))(2) (4), and [Fe(2)(CO)(5)(PPh(3))(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)CH(2) (5). More interestingly, complexes 1-3 could react with C(60) in the presence of CBr(4) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) via Bingel-Hirsch reaction to give the C(60)-containing complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CC(C(60))CO(2)Et]Fe(2)(CO)(6) (6), [Fe(2)(CO)(6)(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)C(C(60)) (7), and [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CC(C(60))CO(2)Et]Fe(2)(CO)(5)(PPh(3)) (8). The new ADT-type models 1-8 were characterized by elemental analysis and spectroscopy, whereas 2-4 were further studied by X-ray crystallography and 6-8 investigated in detail by DFT methods.  相似文献   

20.
A novel type of double butterfly, two mu-CO-containing dianions {[(mu-CO)Fe2(CO)6]2[mu-SCH2(CH2OCH2)nCH2S-mu]}2- (m1, n = 2, 3), has been synthesized from dithiol HSCH2(CH2OCH2)nCH2SH (n = 2, 3), Fe3(CO)12, and Et3N in THF at room temperature. While dianions m1 react in situ with CS2 followed by treatment with dihalide 1,4-(BrCH2)2C6H4 or 1,4-I(CH2)4I to give macrocyclic clusters [mu-SCH2(CH2OCH2)nCH2S-mu](mu-CS2ZCS2-mu)[Fe2(CO)6]2 (1a, n = 2, Z = 1,4-(CH2)2C6H4; 1b, n = 3, Z = (CH2)4), reactions of dianions m1 with (mu-S2)Fe2(CO)6 followed by treatment with dihalide 1,4-I(CH2)4I afford macrocyclic clusters [mu-SCH2(CH2OCH2)nCH2S-mu]{[Fe2(CO)6]2(mu4-S)}2[mu-S(CH2)4S-mu] (2a, n = 2; 2b, n = 3). The crystal structures of 1a and 2b are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号