首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Extraction of microamounts of europium and americium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H+B?) in the presence of 1,3-bis(diphenylphosphino)propane dioxide (DPPPrDO, L) has been investigated. The equilibrium data have been explained assuming that the species $ {\text{HL}}^{ + } ,\,{\text{HL}}_{2}^{ + } ,\,{\text{ML}}^{3 + } \,{\text{and}}\,{\text{ML}}_{3}^{3 + } $ HL + , HL 2 + , ML 3 + and ML 3 3 + (M3+ = Eu3+, Am3+) are extracted into the organic phase. The values of extraction and stability constants of the complex species in nitrobenzene saturated with water have been determined. It was found that the stability constants of the corresponding complexes $ {\text{EuL}}_{n}^{ 3+ } \,{\text{and}}\,{\text{AmL}}_{n}^{ 3+ } , $ EuL n 3 + and AmL n 3 + , where n = 1, 3 and L is DPPPrDO, in water-saturated nitrobenzene are comparable.  相似文献   

2.
Two DOTA-based proligands bearing a pendant diphenylphosphinamide 4a and 4b were synthesised. Their Eu(III) complexes exhibit sensitised emission when excited at 270 nm via the diphenylphosphinamide chromophore. Hydration states of q = 1.5 were determined from excited state lifetime measurements (Eu.4a $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 2. 1 4 \,{\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 0. 6 4 \,{\text{ms}}^{ - 1} $ ; Eu.4b $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 2. 6 7\, {\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 1. 1 8 \,{\text{ms}}^{ - 1} $ ). In the presence of human serum albumin (HSA) (0.1 mM Eu.4a/b, 0.67 mM HSA, pH 7.4) q = 0.4 for Eu.4a ( $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 1. 3 4\, {\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 0. 7 5\, {\text{ms}}^{ - 1} $ ) and q = 0.6 for Eu.4b ( $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 1. 8 3\, {\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 1.0 5 \,{\text{ms}}^{ - 1} $ ). Relaxivites (pH 7.4, 298 K, 20 MHz) of the Gd(III) complexes in the absence and presence of HSA (0.1 mM Gd.4a/b, 0.67 mM HSA) were: Gd.4a (r 1 = 7.6 mM?1s?1 and r 1 = 11.7 mM?1s?1) and Gd.4b. (r 1 = 7.3 mM?1s?1 and r 1 = 16.0 mM?1s?1). These relatively modest increases in r 1 are consistent with the change in inner-sphere hydration on binding to HSA shown by luminescence measurements on Eu.4a/b. Binding constants for HSA determined by the quenching of luminescence (Eu) and enhancement of relaxivity (Gd) were Eu.4a (27,000 M?1 ± 12%), Eu.4b (32,000 M?1 ± 14%), Gd.4a (21,000 M?1 ± 15%) and Gd.4b (26,000 M?1 ± 15%).  相似文献   

3.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium $ {\text{M}}^{ + } \left( {\text{aq}} \right) \, + {\mathbf{1}}\cdot{\text{Na}}^{ + } \left( {\text{nb}} \right) \Leftrightarrow {\mathbf{1}}\cdot{\text{M}}^{ + } \left( {\text{nb}} \right) \, + {\text{Na}}^{ + } \left( {\text{aq}} \right) $ taking place in the two-phase water–nitrobenzene system $ \begin{gathered} ({\text{M}}^{ + } = {\text{ Li}}^{ + } ,{\text{ K}}^{ + } ,{\text{ Rb}}^{ + } ,{\text{ Cs}}^{ + } ,{\text{ H}}_{ 3} {\text{O}}^{ + } ,{\text{NH}}_{4}^{ + }, {\text{ Ag}}^{ + } ,{\text{ Tl}}^{ + } ;{\mathbf{1}} \\ = {\text{ nonactin}};{\text{ aq }} = {\text{ aqueous phase}},{\text{ nb }} = {\text{nitrobenzene phase}}) \\ \end{gathered} $ were determined. Moreover, the stability constants of the M+ complexes in water-saturated nitrobenzene were calculated; they were found to increase in the series of $ {\text{Cs}}^{ + } < {\text{ Rb}}^{ + } < {\text{ H}}_{ 3} {\text{O}}^{ + } ,{\text{ Ag}}^{ + } < {\text{ Tl}}^{ + } < {\text{ Li}}^{ + } < {\text{ K}}^{ + } < {\text{NH}}_{4}^{ + } $ .  相似文献   

4.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + CsL+ (nb) ? ML+ (nb) + Cs+ (aq) taking place in the two–phase water–nitrobenzene system (M+ = K+, Rb+, $ {\text{NH}}_{4}^{ + } $ , Ag+, Tl+; L = calix[4]arene-bis(t-octylbenzo-18-crown-6); aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Furthermore, the stability constants of the ML+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following cation order: $ {\text{NH}}_{4}^{ + } $  < K+ < Ag+ < Rb+ < Tl+.  相似文献   

5.
The standard (p° = 0.1 MPa) molar enthalpies of formation in the crystalline state of the 2-, 3- and 4-hydroxymethylphenols, $ {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} ( {\text{cr)}} = \, - ( 3 7 7. 7 \pm 1. 4)\,{\text{kJ}}\,{\text{mol}}^{ - 1} $ , $ {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} ( {\text{cr) }} = - (383.0 \pm 1.4) \, \,{\text{kJ}}\,{\text{mol}}^{ - 1} $ and $ {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} ( {\text{cr)}} = - (382.7 \pm 1.4)\,{\text{kJ}}\,{\text{mol}}^{ - 1} $ , respectively, were derived from the standard molar energies of combustion, in oxygen, to yield CO2(g) and H2O(l), at T = 298.15 K, measured by static bomb combustion calorimetry. The Knudsen mass-loss effusion technique was used to measure the dependence of the vapour pressure of the solid isomers of hydroxymethylphenol with the temperature, from which the standard molar enthalpies of sublimation were derived using the Clausius–Clapeyron equation. The results were as follows: $ \Updelta_{\rm cr}^{\rm g} H_{\rm m}^{\rm o} = (99.5 \pm 1.5)\,{\text{kJ}}\,{\text{mol}}^{ - 1} $ , $ \Updelta_{\rm cr}^{\rm g} H_{\rm m}^{\rm o} = (116.0 \pm 3.7) \,{\text{kJ}}\,{\text{mol}}^{ - 1} $ and $ \Updelta_{\rm cr}^{\rm g} H_{\rm m}^{\rm o} = (129.3 \pm 4.7)\,{\text{ kJ mol}}^{ - 1} $ , for 2-, 3- and 4-hydroxymethylphenol, respectively. From these values, the standard molar enthalpies of formation of the title compounds in their gaseous phases, at T = 298.15 K, were derived and interpreted in terms of molecular structure. Moreover, using estimated values for the heat capacity differences between the gas and the crystal phases, the standard (p° = 0.1 MPa) molar enthalpies, entropies and Gibbs energies of sublimation, at T = 298.15 K, were derived for the three hydroxymethylphenols.  相似文献   

6.
From extraction experiments and $ \gamma $ -activity measurements, the extraction constant corresponding to the equilibrium $ {\text{Eu}}^{ 3+ } \left( {\text{aq}} \right) + 3 {\text{A}}^{ - } \left( {\text{aq}} \right) + {\mathbf{1}}\left( {\text{nb}} \right) \Leftrightarrow {\mathbf{1}} \cdot {\text{Eu}}^{ 3+ } \left( {\text{nb}} \right) + 3 {\text{A}}^{ - } \left( {\text{nb}} \right) $ taking place in the two-phase water–nitrobenzene system ( $ {\text{A}}^{ - } = \text {CF}_{3} \text{SO}_{3}^{ - } $ ; 1 = macrocyclic lactam receptor—see Scheme 1; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as $ { \log } K_{{{\text{ex}} }} ({\mathbf{1}} \cdot {\text{Eu}}^{ 3+ } ,{\text{ 3A}}^{ - } )\; = \; - 4. 9 \pm 0. 1 $ . Further, the stability constant of the Eu3+ cationic complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: $ { \log } \beta_{{{\text{nb}} }} ({\mathbf{1}} \cdot {\text{Eu}}^{ 3+ } ) \; = \; 8. 2 \pm 0. 1 $ . Finally, using DFT calculations, the most probable structure of the cationic complex species Eu3+ was derived. In the resulting Eu3+ complex, the “central” cation Eu3+ is bound by five bond interactions to two ethereal oxygen atoms and two carbonyl oxygens, as well as to one carbon atom of the corresponding benzene ring of the parent macrocyclic lactam receptor 1 via cation-π interaction.
Scheme 1
Structural formula of 2,20-dichloro-9,10,11,12,13,14-hexahydro-6H,22H-dibenzo[n,q][1,4,10,13]dioxadiaza-meta-xylyl-7,15(8H,16H)-dione (abbrev. 1)  相似文献   

7.
Extraction of microamounts of europium and americium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H+B?) in the presence of bis(diphenylphosphino)methane dioxide (DPPMDO, L) has been investigated. The equilibrium data have been explained assuming that the species $ {\text{HL}}^{ + } $ , $ {\text{HL}}_{2}^{ + } $ , $ {\text{ML}}_{2}^{3 + } $ , $ {\text{ML}}_{3}^{3 + } $ and $ {\text{ML}}_{4}^{3 + } $ (M3+ = Eu3+, Am3+) are extracted into the organic phase. The values of extraction and stability constants of the species in nitrobenzene saturated with water have been determined. It was found that the stability constants of the corresponding complexes $ {\text{EuL}}_{n}^{3 + } $ and $ {\text{AmL}}_{n}^{3 + } $ , where n = 2, 3 and L is DPPMDO, in water–saturated nitrobenzene are comparable, whereas in this medium the stability of the cationic species $ {\text{AmL}}_{4}^{3 + } $ (L = DPPMDO) is somewhat higher than that of $ {\text{EuL}}_{4}^{3 + } $ with the same ligand L.  相似文献   

8.
Extraction of microamounts of strontium and barium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H+B?) in the presence of dicyclohexano-18-crown-6 (DCH18C6, L) has been investigated. The equilibrium data have been explained assuming that the complexes HL+, $ {\text{HL}}_{ 2}^{ + } $ , ML2+ and $ {\text{ML}}_{ 2}^{ 2+ } $ (M2+ = Sr2+, Ba2+) are extracted into the organic phase. The values of extraction and stability constants of the species in nitrobenzene saturated with water have been determined. It was found that in the mentioned medium the stability constants of the complexes BaL2+ and $ {\text{BaL}}_{2}^{2 + }, $ where L = DCH18C6, are somewhat higher than those of the species SrL2+ and $ {\text{SrL}}_{2}^{2 + } $ with the same ligand L.  相似文献   

9.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + NaL+ (nb) ⇔ ML+ (nb) + Na+ (aq) taking place in the two-phase water–nitrobenzene system (M= H3O+, \textNH4+ {\text{NH}}_{4}{}^{+} , Ag+, Tl+; L = hexaethyl p-tert-butylcalix[6]arene hexaacetate; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Furthermore, the stability constants of the ML+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following order: \textAg +   <  NH4 +   <  \textH 3 \textO +   <  \textNa +   <  \textTl + . {\text{Ag}}^{ + } \, < \,\hbox{NH}_{4}{}^{ + } \, < \,{\text{H}}_{ 3} {\text{O}}^{ + } \, < \,{\text{Na}}^{ + } \, < \,{\text{Tl}}^{ + }.  相似文献   

10.
Solvent extraction of microamounts of trivalent europium and americium into nitrobenzene by using a synergistic mixture of hydrogen dicarbollylcobaltate (H+B?) and magnesium ionophore III (L) was studied. The equilibrium data were explained assuming that the species HL+, \( \text{HL}_{2}^{ + } , \) \( {\text{ML}}_{2}^{3 + } , \) and \( {\text{ML}}_{3}^{3 + } \) (M3+ = Eu3+, Am3+; L = magnesium ionophore III) are extracted into the nitrobenzene phase. The values of extraction and stability constants of the cationic complex species in nitrobenzene saturated with water were determined and discussed.  相似文献   

11.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M2+ (aq) + SrL2+ (nb) $ \Leftrightarrow $ ML2+ (nb) + Sr2+ (aq) taking place in the two-phase water–nitrobenzene system (M2+ = Ca2+, Pb2+, Cu2+, Zn2+, Cd2+, $ {\text{UO}}_{2}^{2 + } $ , Mn2+, Co2+, Ni2+; L = hexaethyl p-tert-butylcalix[6]arene hexaacetate; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Moreover, the stability constants of the ML2+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following order: Cd2+ < Ca2+ < Mn2+ < Cu2+, Zn2+ <  $ {\text{UO}}_{2}^{2 + } $ , Co2+ < Ni2+ < Sr2+ < Pb2+.  相似文献   

12.
The standard Gibbs energy of formation of chromium tellurate, Cr2TeO6 was determined from the vapour pressure measurement of TeO2(g) over the phase mixture Cr2TeO6(s) + Cr2O3(s) in the temperature range 1,183–1,293 K. A thermogravimetry (TG)-based transpiration technique was used for the vapour pressure measurement. This technique was validated by measuring the vapour pressure of CdCl2(g) over CdCl2(s). The temperature dependence of the vapour pressure of CdCl2(g) could be represented as logp (Pa) (±0.02) = 12.06 ? 8616.3/T (K) (734 ? 823 K). A ‘third-law’ analysis of the vapour pressure data yielded a mean value of 185.1 ± 0.4 kJ mol?1 for the enthalpy of sublimation of CdCl2(s). The temperature dependence of vapour pressure of TeO2(g) generated by the incongruent vapourisation reaction, $ {\text{Cr}}_{ 2} {\text{TeO}}_{ 6} (\rm s) \to {\text{Cr}}_{ 2} {\text{O}}_{ 3} (\rm s) + {\text{TeO}}_{ 2} (\rm g) + 1/2\,{\text{O}}_{ 2} (\rm g) $ could be represented as logp (Pa) (±0.04) = 18.57 – 21,199/T (K) (1,183 – 1,293 K). The temperature dependence of the Gibbs energy of formation of Cr2TeO6 could be expressed as $ \{ \Updelta G_{\text{f}}^{ \circ } ({\text{Cr}}_{ 2} {\text{TeO}}_{ 6} ,{\text{ s}}){\text{ (kJ}}\,{\text{mol}}^{ - 1} )\pm 4. 0 {\text{\} = }} - 1 6 2 5. 6 { \,+\, 0} . 5 3 3 6\,T({\text{K}}) \, (1{,}183 - 1{,}293\,{\text{K}}). $ A drop calorimeter was used for measuring the enthalpy increments of Cr2TeO6 in the temperature range 373–973 K. Thermodynamic functions viz., heat capacity, entropy and Gibbs energy functions of Cr2TeO6 were derived from the experimentally measured enthalpy increment values. $ \Updelta H_{{{\text{f}},298\,{\text{K}}}}^{ \circ } ({\text{Cr}}_{ 2} {\text{TeO}}_{ 6} ) $ was found to be ?1636.9 ± 0.8 kJ mol?1.  相似文献   

13.
Extraction of microamounts of strontium and barium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H+B?) in the presence of dicyclohexano-24-crown-8 (DCH24C8, L) has been investigated. The equilibrium data have been explained assuming that the complexes HL+, $ {\text{HL}}_{2}^{ + }, $ ML2+ and $ {\text{ML}}_{ 2}^{2 + } $ (M2+ = Sr2+, Ba2+) are extracted into the organic phase. The values of extraction and stability constants of the species in nitrobenzene saturated with water have been determined. It was found that in water–saturated nitrobenzene, the stability constants of the complexes BaL2+ and $ {\text{BaL}}_{ 2}{^{2 + }}, $ where L = DCH24C8, are somewhat higher than those of the corresponding species SrL2+ and $ {\text{SrL}}_{ 2}{^{2 + }} $ with the same ligand L.  相似文献   

14.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M2+(aq) + Sr2+(nb) ? M2+(nb) + Sr2+(aq) taking part in the two-phase water–nitrobenzene system (M2+ = Mg2+, Ca2+, Ba2+, Cu2+, Zn2+, Cd2+, Pb2+, ${\text{UO}}_{2}^{2 +} $ , Mn2+, Fe2+, Co2+, Ni2+; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Furthermore, the individual extraction constants of the M2+ cations in the mentioned two-phase system were calculated; they were found to increase in the following cation order: ${\text{UO}}_{2}^{2 + } $  < Zn2+, Ni2+ < Cu2+, Cd2+ < Co2+ < Mg2+ < Ca2+ < Mn2+, Fe2+ < Sr2+ < Pb2+ < Ba2+.  相似文献   

15.
The equilibrium constants and thermodynamic parameters for complex formation of 18-crown-6(18C6) with Zn2+, Tl+, Hg2+ and $ {\text{UO}}^{{{\text{2 + }}}}_{{\text{2}}} $ cations have been determined by conductivity measurements in acetonitrile(AN)-dimethylformamide(DMF) binary solutions. 18-crown-6 forms 1:1 complexes [M:L] with Zn2+, Hg2+ and $ {\text{UO}}^{{{\text{2 + }}}}_{{\text{2}}} $ cations, but in the case of Tl+ cation, a 1:2 [M:L2] complex is formed in most binary solutions. The thermodynamic parameters ( $ \Delta {\text{H}}^{ \circ }_{{\text{c}}} $ and $ \Delta {\text{S}}^{ \circ }_{{\text{c}}} $ ) which were obtained from temperature dependence of the equilibrium constants show that in most cases, the complexes are enthalpy destabilized but entropy stabilized and a non-monotonic behaviour is observed for variations of standard enthalpy and entropy changes versus the composition of AN/DMF binary mixed solvents. The obtained results show that the order of selectivity of 18C6 ligand for these cations changes with the composition of the mixed solvent. A non-linear relationship was observed between the stability constants (logKf) of these complexes with the composition of AN/DMF binary solutions. The influence of the $ {\text{ClO}}^{ - }_{{\text{4}}} $ , $ {\text{NO}}^{ - }_{{\text{3}}} $ and $ {\text{Cl}}^{ - } $ anions on the stability constant of (18C6-Na+) complex in methanol (MeOH) solutions was also studied by potentiometry method. The results show that the stability of (18C6-Na+) complex in the presence of the anions increases in order: $ {\text{ClO}}^{ - }_{{\text{4}}} $  >  $ {\text{NO}}^{ - }_{{\text{3}}} $  >  $ {\text{Cl}}^{ - } $ .  相似文献   

16.
Extraction of microamounts of calcium and strontium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H+B?) in the presence of diphenyl-N-butylcarbamoylmethyl phosphine oxide (DPBCMPO, L) has been investigated. The equilibrium data have been explained assuming that the species HL+, \( {\text{HL}}_{2}^{ + } \), \( {\text{ML}}_{2}^{2 + } \), \( {\text{ML}}_{3}^{2 + } \) and \( {\text{ML}}_{4}^{2 + } \) (M2+ = Ca2+, Sr2+) are extracted into the organic phase. The values of extraction and stability constants of the cationic complexes in nitrobenzene saturated with water have been determined. In the considered nitrobenzene medium, it was found that the stability of the \( {\text{SrL}}_{2,{\text{org}}}^{2 + } \) complex is somewhat higher than that of species \( {\text{CaL}}_{2,{\text{org}}}^{2 + } \), while the stability constants of the remaining strontium complexes \( {\text{SrL}}_{3,{\text{org}}}^{2 + } \) and \( {\text{SrL}}_{4,{\text{org}}}^{2 + } \) are smaller than those of the corresponding complex species \( {\text{CaL}}_{n}^{2 + } \) (n = 3, 4).  相似文献   

17.
Different tetraalkylammonium, viz. N+(CH3)4, N+(C2H5)4, N+(C3H7)4, N+(C4H9)4 along with simple ammonium salts of bis (2-ethylhexyl) sulfosuccinic acid have been prepared by ion-exchange technique. The critical micelle concentration of surfactants with varied counterions have been determined by measuring surface tension and conductivity within the temperature range 283–313 K. Counterion ionization constant, α, and thermodynamic parameters for micellization process viz., $\Delta G_m^{\text{0}} $ , $\Delta H_m^{\text{0}} $ , and $\Delta S_m^{\text{0}} $ and also the surface parameters, Γmax and Amin, in aqueous solution have been determined. Large negative $\Delta G_m^{\text{0}} $ of micellization for all the above counterions supports the spontaneity of micellization. The value of standard free energy, $\Delta G_m^{\text{0}} $ , for different counterions followed the order $${\text{N}}^{\text{ + }} \left( {{\text{CH}}_{\text{3}} } \right)_4 >{\text{NH}}_{\text{4}}^{\text{ + }} >{\text{Na}}^{\text{ + }} >{\text{N}}^{\text{ + }} \left( {{\text{C}}_{\text{2}} {\text{H}}_5 } \right)_{\text{4}} {\text{ $>$ N}}^{\text{ + }} \left( {{\text{C}}_{\text{3}} {\text{H}}_{\text{7}} } \right)_4 >{\text{N}}^{\text{ + }} \left( {{\text{C}}_{\text{4}} {\text{H}}_{\text{9}} } \right)_4 $$ , at a given temperature. This result can be well explained in terms of bulkiness and nature of hydration of the counterion together with hydrophobic and electrostatic interactions.  相似文献   

18.
In this study, a hydrolysis model for lead, applicable to high ionic strength, is developed based on lead oxide solubilities as a function of ionic strength. Solubility measurements on lead oxide, α-PbO (tetragonal, red), mineral name litharge, as a function of ionic strength were conducted in NaClO4 solutions up to I?=?0.45 mol·kg?1, in NaCl solutions up to I?=?5.0 mol·kg?1, and in Na2SO4 solutions up to I?=?5.4 mol·kg?1, at room temperature (22.5?±?0.5 °C). The lead hydroxyl species considered in this work include the following,
$$ {\text{PbO}}\left( {\text{cr}} \right) \, + {\text{ 2H}}^{ + } \rightleftharpoons {\text{Pb}}^{ 2+ } + {\text{ H}}_{ 2} {\text{O}}\left( {\text{l}} \right) $$
(1)
$$ {\text{Pb}}^{ 2+ } + {\text{ H}}_{ 2} {\text{O}}\left( {\text{l}} \right) \rightleftharpoons {\text{PbOH}}^{ + } + {\text{ H}}^{ + } $$
(2)
$$ {\text{Pb}}^{ 2+ } + {\text{ 2H}}_{ 2} {\text{O}}\left( {\text{l}} \right) \rightleftharpoons {\text{Pb}}\left( {\text{OH}} \right)_{ 2} \left( {\text{aq}} \right) \, + {\text{ 2H}}^{ + } $$
(3)
$$ {\text{Pb}}^{ 2+ } + {\text{ 3H}}_{ 2} {\text{O}}\left( {\text{l}} \right) \rightleftharpoons {\text{Pb(OH}})_{3}^{ - } + 3{\text{H}}^{ + } $$
(4)
The equilibrium constants for Reactions (1) and (2) were taken from literature. The equilibrium constants in base 10 logarithmic units for Reactions (3) and (4) are determined in this study as ? 17.05?±?0.10 (2σ) and ? 27.99?±?0.15 (2σ), respectively, with a set of Pitzer parameters describing the interactions with Na+, Cl?, and \( {\text{SO}}_{4}^{2 - } .\) In combination with the parameters from literature including those that have already been published by our group, the solution chemistry of lead in a number of media including NaCl, MgCl2, NaHCO3, Na2CO3, Na2SO4, NaClO4, and their mixtures, can be accurately described in a wide range of ionic strengths.
  相似文献   

19.
From extraction experiments and $ \gamma $ -activity measurements, the exchange extraction constants corresponding to the general equilibrium M2+(aq) + Sr2+(nb) $ \Leftrightarrow $ M2+(nb) + Sr2+(aq) taking place in the two-phase water–nitrobenzene system (M2+ = Mg2+, Ca2+, Ba2+, Pb2+, Cu2+, Zn2+, Cd2+, $ {\hbox{UO}}_{2}^{2 + } $ , Mn2+, Co2+, Ni2+; 1 = macrocyclic lactam receptor–see Scheme 1; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Moreover, the stability constants of the M2+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following cation order: Mg2+ < Co2+ < Cu2+, Mn2+, Ni2+ < Cd2+ < Ca2+ < Ba2+, Zn2+ < Pb2+ <  $ {\hbox{UO}}_{2}^{2 + } $ .
Scheme 1
Structural formula of 2,18-dichloro-9,10,11,12-tetrahydro-6H, 20H-dibenzo[l,o][1,11,4,8]dioxadiazacyclohexadecine-7,13(8H, 14H)-dione (abbrev. 1)  相似文献   

20.
From extraction experiments and $ \gamma $ -activity measurements, the extraction constants corresponding to the general equilibrium Eu3+(aq) + 3 A?(aq) + L(nb) $ \Leftrightarrow $ EuL3+(nb) + 3A?(nb) taking place in the two-phase water–nitrobenzene system ( $ {\text{A}}^{ - } = {\text{CF}}_{ 3} {\text{SO}}_{3}^{ - } $ ; L = electroneutral receptors denoted by 1, 2, and 3 – see Scheme 1; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Further, the stability constants of the EuL3+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the series of 3 < 2 < 1.
Scheme 1
Structural formulas of N,N,N′,N′,N″,N″-hexacyclohexyl-4,4′,4″-propylidynetris(3-oxabutyramide) (1), bis[(12-crown-4)methyl] dodecylmethylmalonate (2), and bis[(benzo-15-crown-5)-4′-ylmethyl] pimelate (3)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号