首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TMNO-activated reaction of the heteronuclear cluster Os3Ru(μ-H)2(CO)13 (1) with diphenylphosphine afforded the novel phosphido-bridged clusters Os3Ru(μ-PPh2)(μ-H)3(CO)11 (2), Os3Ru(μ-PPh2)2(μ-H)2(CO)10 (3), Os3Ru(μ-PPh2)2(μ-H)4(CO)9 (4), and Os3Ru(μ-PPh2)(μ-H)3(CO)11(PPh2H) (5). The formation of 2-5 proceeded via P-H bond cleavage in the adduct Os3Ru(μ-H)2(CO)12(PPh2H) (6). Reaction of 2 with PPh3 afforded the adduct Os3Ru(μ-PPh2)(μ-H)3(CO)11(PPh3) (7) and the substituted derivative Os3Ru(μ-PPh2)(μ-H)3(CO)10(PPh3) (8).  相似文献   

2.
A facile strategy is presented to form 3D porous Cu@Cu2O aerogel networks by self‐assembling Cu@Cu2O nanoparticles with the diameters of ca. 40 nm for constructing catalytic interfaces. Unexpectedly, the prepared Cu@Cu2O aerogel networks display excellent electrocatalytic activity to glucose oxidation at a low onset potential of ca. 0.25 V. Moreover, the Cu@Cu2O aerogels also can act as mimicking‐enzymes including horseradish peroxidase and NADH peroxidase, and show obvious enzymatic catalytic activities to the oxidation of dopamine (DA), o‐phenyldiamine (OPD), 3,3,5,5‐tetramethylbenzidine (TMB), and dihydronicotinamide adenine dinucleotide (NADH) in the presence of H2O2. These 3D Cu@Cu2O aerogel networks are a new class of porous catalytic materials as mimic peroxidases and electrocatalysts and offer a novel platform to construct catalytic interfaces for promising applications in electrochemical sensors and artificial enzymatic catalytic systems.  相似文献   

3.
《中国化学会会志》2017,64(7):795-803
β‐AgVO3 nanorods have been demonstrated to exhibit intrinsic peroxidase‐like activity. The oxidation of glucose can be catalyzed by glucose oxidase (GOx ) to generate H2O2 in the presence of O2 . The β‐AgVO3 nanorods can catalytically oxidize peroxidase substrates including o‐phenylenediamine (OPD ), 3,3′,5,5′‐tetramethylbenzidine (TMB ), and diammonium 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonate) (ABTS ) by H2O2 to produce typical color reactions: OPD from colorless to orange, TMB from colorless to blue, and ABTS from colorless to green. The catalyzed reaction by the β‐AgVO3 nanorods was found to follow the characteristic Michaelis–Menten kinetics. Compared with horseradish peroxidase and AgVO3 nanobelts, β‐AgVO3 nanorods showed a higher affinity for TMB with a lower Michaelis–Menten constant (K m) value (0.04118 mM ) at the optimal condition. Taking advantage of their high catalytic activity, the as‐synthesized β‐AgVO3 nanorods were utilized to develop a colorimetric sensor for the determination of glucose. The linear range for glucose was 1.25–60 μM with the lower detection limit of 0.5 μM . The simple and sensitive GOx ‐β–AgVO3 nanorods–TMB sensing system shows great promise for applications in the pharmaceutical, clinical, and biosensor detection of glucose.  相似文献   

4.
The complex (η5-C5H5)NiRu3(μ-H)(CO)942-CCHBut) (1a) reacts with olefins to give several organic products, including species derived from the coupling of the vinylidene ligand with an olefin-derived =CRR′ fragment, representing the first example of a (non catalytic) olefin metathesis reaction involving a metal cluster; other complexes structurally or chemically related to the compound 1a have also been treated with olefins and alkynes.  相似文献   

5.
《中国化学快报》2020,31(9):2207-2210
The construction of highly stable and regular nanoreactors is a major challenge. In this work, we use a facile template protection method to obtain ZIF-67@SiO2 (JS) and to encapsulate metal oxide nanoparticles (Co3O4) into nanoreactors (SiO2). ZIF-67 crystals provide a cobalt species; SiO2 was first used as a protective layer of ZIF-67 and then as a nanoreactor for metastable metal oxide nanoparticles. On this basis, Co3O4@SiO2 with dodecahedron morphology were synthesized by calcining JS at different temperatures, followed by a hydrothermal reaction to obtain Co3(OH)4Si2O5. Subsequently, CoSx and CoP-SiO2 were fabricated through sulfuration and phosphorization. The results in this work show that nanoreactors derived from metal-organic frameworks (MOFs) with a rational structure have broad development prospects.  相似文献   

6.
Four new chiral ruthenium carbonyl cluster complexes Ru3(μ-H)2(CO)9(L-2H) (1), Ru3(μ-H)2(CO)7(L-2H)(dppm) (2), Ru3(μ-H)2(CO)7(L-2H)(PPh3)2 (3), Ru3(μ-H)2(CO)7(L-2H)(dppe) (4) containing a dehydrogenated form (L-2H) of 3,4,6-tri-O-benzyl-d-galactal (L) as a chiral ligand have been prepared and characterized. The anticancer activity of five compounds 1-4 and Ru3(μ-H)2(CO)9(L-2H) 5 (L = tribenzyl glucal) against six types of human cancer cell lines was studied and compared to cisplatin. Compound 1 was chosen to produce more detailed growth curves based on overall highest activity profile. The structure of compound 2 was established by a single-crystal X-ray diffraction analysis. The structure based on triangular metal framework contains a bridging dehydrogenated tribenzyl galactal ligand bonded in a parallel μ32-bonding mode and a bridging dppm ligand. Variable-temperature NMR studies show that the two hydride ligands in compounds 1 and 2 are dynamically active on the NMR time scale at room temperature.  相似文献   

7.
《Polyhedron》2001,20(15-16):2011-2018
The reaction behavior of the 48e-clusters [Ru3(CO)8(μ-H)2(μ-PR2)2] (R=But, 1a; R=Cy, 1b) towards phosphine ligands has been studied. Whereas 1a reacts spontaneously with many phosphines at room temperature, a lack of reactivity for 1b under similar conditions is observed. Thus 1a reacts with dppm (Ph2PCH2PPh2) to the known 46e-cluster [Ru3(μ-CO)(CO)43-H)(μ-H)(μ-PBut2)2(μ-dppm)] (2a), and the reaction of 1a with dppe (Ph2PC2H4PPh2) yields analogously [Ru3(μ-CO)(CO)43-H)(μ-H)(μ-PBut2)2(μ-dppe)] (3). Reactions of 1a with dmpm (Me2PCH2PMe2), dmpe (Me2PC2H4PMe2) and PBun3, respectively, gave in each case a mixture of products which could not be characterized. Contrary to the reaction behavior at room temperature, 1b reacts with phosphines in THF under reflux yielding the novel complexes [Ru3(CO)6(μ-H)2(μ-PCy2)2L2] (L=Cy2PH, 4a; L=But2PH, 4b; L=Ph2PH, 4c; L=P(OEt)3, 4d). 4a is also obtained directly by the reaction of [Ru3(CO)12] with an excess of Cy2PH. The molecular structure of 4a has been determined by a single-crystal X-ray analysis. Moreover, the thermolysis of 1a in octane affords [Ru3(CO)8(μ-H)23-PBut)(But2PH)] (6) as the main product, and the thermolysis of [Ru3(CO)9(But2PH)(μ-dppm)] (7) yields 2a to a considerable extent. Treatment of 1a with carbon tetrachloride leads to [Ru3(CO)7(μ-H)(μ-PBut2)2(μ-Cl)] (8) as the main product.  相似文献   

8.
Reactions of [(Cp1Ir)2(μ-dmpm)(μ-H)2][OTf]2 (1) with NaOtBu in aromatic solvent at room temperature give [(Cp1Ir)(H)(μ-dmpm)(μ-H)(Cp1Ir)(Ar)][OTf] [Ar = Ph (3), p-Tol (4a), m-Tol (4b), 2-furyl (5a), 3-furyl (5b)] via intermolecular aromatic C–H activation. Treatment of [(Cp1Ir)2(μ-dppm)(μ-H)2][OTf]2 (2) with weak base (Et2NH) results in intramolecular C–H activation of a phenyl group in the dppm ligand to give [(Cp1Ir)(H){μ-PPh(C6H4)CH2PPh2}(μ-H)(Cp1Ir)][OTf] (6). Reaction of 1 with NaOtBu in tetrahydrofuran under H2 (1 atm) results in activation of the H–H bond to give [{(Cp1Ir)(H)}2(μ-dmpm)(μ-H)][OTf] (7). Reaction of 1 with NaOtBu in dichloromethane under carbon monoxide (1 atm) gives a carbonyl-bridged IrII–IrII complex, [(Cp1Ir)2(μ-dmpm)(μ-H)(μ-CO)][OTf] (8-OTf). These results strongly suggest that the active species in C–H and H–H bond activation starting with 1 and 2 would be unsaturated 32e? diiridium species. The structures of 3, 5a, 6, 7, and 8-BPh4 have been determined by X-ray diffraction methods.  相似文献   

9.
The complex Re2(CO)8[μ-η2-C(H)C(H)Bun](μ-H) (1) reacts with SbPh3 at 68 °C to yield the new σ-phenyl dirhenium complex Re2(CO)8(SbPh3)(Ph)(μ-SbPh2) (4) in 72% yield. Compound 4 contains two rhenium atoms held together by a bridging SbPh2 ligand. One rhenium atom contains a σ-phenyl group. The other rhenium atom contains a SbPh3 ligand. Compound 4 was also obtained in 34% yield from the reaction of Re2(CO)10 with SbPh3 in the presence of UV–Vis irradiation together with some monorhenium products: HRe(CO)4SbPh3 (5), Re(Ph)(CO)4SbPh3 (6) and fac-Re(Ph)(CO)3(SbPh3)2 (7) in low yields. Complex 4 is split by reaction with an additional quantity of SbPh3 to yield the monorhenium SbPh3 complexes 6, 7 and mer-Re(Ph)(CO)3(SbPh3)2 (8) that contain a σ-phenyl ligand. When 4 was treated with hydrogen, the phenyl ligand was eliminated as benzene and the dirhenium complexes Re2(CO)8(μ-SbPh2)(μ-H) (10), and Re2(CO)7(SbPh3)(μ-SbPh2)(μ-H) (11), were formed that contain a bridging hydrido ligand. The doubly SbPh2-bridged dirhenium complex Re2(CO)7(SbPh3)(μ-SbPh2)2 (9) that has no metal–metal bond was also formed in these two reactions.  相似文献   

10.
A chiral carbohydrate ligand 3,4,6-tri-O-benzyl-d-glucal (L) reacts with the cluster triruthenium dodecacarbonyl Ru3(CO)12 giving a novel chiral cluster Ru3(μ-H)2(CO)9(L-2H) (I) that shows fluxional behavior at room temperature. The reaction of Ru3(μ-H)2(CO)9(L-2H) (I) with triphenylphosphine and diphenylphosphinoethane (dppe) gives two new clusters Ru3(μ-H)2(CO)7(L-2H)(PPh3)2 (II) and Ru3(μ-H)2(CO)7(L-2H)(dppe) (III). The new compounds I, II and III have been characterized by a combination of elemental analysis, mass spectrometry, infrared and variable temperature NMR spectroscopy.  相似文献   

11.
Antibacterial fibers have great potential in numerous applications, including bandages, surgical robes, and surgical sutures, and play a significant role in our everyday lives. Here, zeolitic imidazolate framework-67 was synthesized using a green method on silk fibers through a layer-by-layer process under ultrasonic irradiation (ZIF-67@silk [U]) and without ultrasonic irradiation (ZIF-67@silk [B]). Then, iodine was loaded on ZIF-67@silk samples and were assessed as antibacterial fibers with iodine release. Four samples of ZIF-67@silk and I2@ZIF-67@silk were characterized by FT-IR, PXRD, FE-SEM, TGA, BET, and UV–Vis spectroscopy. Finally, antibacterial activity of ZIF-67@silk (B and U) and I2@ZIF-67@silk (B and U) on Staphylococcus aureus as Gram-positive bacteria and Escherichia coli as Gram-negative bacteria was investigated. In addition to ZIF-67@silk samples, iodine-loaded samples showed excellent antimicrobial facility.  相似文献   

12.
The mixed metal cluster Cp*IrOs3(μ-H)2(CO)10 (1) reacted readily with a number of group 16 substrates under chemical activation with TMNO. It reacted with C6H5SH to afford the novel cluster Cp*IrOs3(μ-H)3(CO)9(μ-SPh) (2). It also reacted readily with Ph3PSe to afford five new clusters, viz., Cp*IrOs3(μ-H)2(CO)93-Se) (3) Os3(μ-H)2(CO)73-Se)(PPh3)2 (4), Cp*IrOs3(μ-H)2(CO)9(PPh3) (5), Cp*IrOs3(μ-H)23-Se)(CO)8(PPh3) (6) and Cp*IrOs3(μ-H)23-Se)2(CO)7(PPh3) (7). The reaction pathway for this reaction has been studied carefully and suggests that Ph3PSe functioned primarily as a selenium atom transfer agent to give initially the even more reactive 3. The reaction of 1 with di-p-tolyl ditelluride yielded three new clusters, 8-10, which were non-interconverting stereoisomers with the formulation Cp*IrOs3(μ-H)2(μ-Te-p-C6H4CH3)2(CO)8.  相似文献   

13.
The reaction of [Os3(CO)10(μ-dppm)] (1) with tBu2PH in refluxing diglyme results in the electron-deficient metal cluster complex [Os3(CO)5(μ3-H)(μ-PtBu2)2(μ-dppm)] (2) (dppm = Ph2PCH2PPh2) in good yields. The molecular structure of 2 has been established by a single crystal X-ray structure analysis. In contrast to the known homologue [Ru3(μ-CO)(CO)4(μ3-H)(μ-H)(μ-PtBu2)2(μ-dppm)] (3), no bridging carbonyl ligand was found in 2. The electronically unsaturated cluster 2 does not react with carbon monoxide under elevated pressure, therefore 2 seems to be coordinatively saturated by reason of the high steric demands of the phosphido ligands.  相似文献   

14.
Small-molecule enzyme mimics as biocatalysts have been extensively applied in diverse colorimetric sensors fabrication. However, excavating potential organic enzyme mimics with high catalytic activity still remains challenging. In this study, the peroxidase mimicking activity of nicotinic acid (VB3) was demonstrated for the first time through chromogenic substrate 3, 3′, 5, 5′-tetramethylbenzidine (TMB) at the existence of hydrogen peroxide (H2O2). The catalytic activity of VB3 kept more than 80% of its optimum activity in a broad pH range of 3.0–9.0. In addition, the kinetic parameter (Michaelis constant, Km = 0.037 mM) of VB3 catalysis to H2O2 is smaller than natural horseradish peroxidase (HRP) and previously reported peroxidase mimics. The catalytic mechanism of VB3 is mainly attributed to the active species of hydroxyl radical (OH) and partially attributed to the superoxide free radicals (O2?). A convenient and sensitive colorimetric method based on VB3-H2O2-TMB chromogenic system for H2O2 and glutathione detection was fabricated with the linear ranges of 5.0–100.0 μM and 5.0–50.0 μM, respectively. In short, this work will not only bring new enlightenment on the physiological functions and practical applications in the analytical field of VB3, but also provide a new type of structural reference for small-molecule enzyme mimics.  相似文献   

15.
6-Dimethylamino-2-phenylbenzothiazole (1-H) is a push-pull benzothiazole fluorophore mimicking the firefly oxyluciferin structure. We newly prepared 7-chloro and 7-bromo derivatives of 1-H and its 4-acetyl derivative (2-H), and their spectroscopic and photophysical properties were investigated. The halogenated derivatives showed the blue-shifted electronic absorption maxima and fluorescence emission maxima compared to 1-H and 2-H, resulted from the deformations of the NMe2 groups and the electron withdrawing properties of the halogen groups. In addition, the halogen substitutions accelerate intersystem crossing by heavy atom effect, resulting in a decrease in fluorescence quantum yields. Interestingly, however, the halogenated derivatives of 2-H still showed moderate fluorescence quantum yields. The halogenation effect is one of the guides to design push-pull benzothiazole fluorophores for tuning fluorescence properties.  相似文献   

16.
Reaction of the cluster Os3(μ-H)(μ-OH)(CO)10 (1) with 1-naphthol afforded the isomeric clusters 2a and 3a with the formulae Os3(μ-H)23-1-OC10H6)(CO)9. A similar reaction with 2-naphthol, however, gave Os3(μ-H)(μ-2-OC10H7)(CO)10, 4b, and the analogue of 2a. These clusters have been structurally characterised to confirm the mode of anchoring of the naphthols.  相似文献   

17.
Reaction of the heteronuclear cluster RuOs3(μ-H)2(CO)13 (1) with azulene under thermal activation afforded the novel clusters RuOs3(μ-H)(CO)93522-C10H9) (3) and Ru2Os3(μ-H)2(CO)13(μ-CO)(μ352-C10H8) (5a), with 4,6,8-trimethylazulene to give RuOs3(μ-H)(CO)8(μ-CO)(μ,η54-C10H6Me3) (4) and Ru2Os3(μ-H)2(CO)13(μ-CO)(μ352-C10H5Me3) (5b), and with guaiazulene to give Ru2Os3(CO)113533-C10H5Me2iPr) (6), respectively. In 35, cluster-to-ligand hydrogen transfer appears to have taken place, with the organic moiety capping a trimetallic face in 3, bridging a metal–metal bond in 4 and via a μ352 bonding mode in 5a and 5b. Cluster 6 contains a trigonal bipyramidal metal framework with the guaiazulene ligand over a triangular metal face. All five clusters have been completely characterised, including by single-crystal X-ray diffraction analysis.  相似文献   

18.
Treatment of the electronically unsaturated cluster [(μ-H)Os3(CO)8{Ph2PCH2P(Ph)C6H4}] (1) with primary phosphines PPhH2 and PCyH2 gives the phosphido bridged compounds [(μ-H)Os3(CO)8(μ-PPhH)(μ-dppm)] (2) and [(μ-H)Os3(CO)8(μ-PCyH)(μ-dppm)] (3), respectively, by P-H bond activation of the phosphines and demetallation of the phenyl ring of the diphosphine ligand. Thermolysis of 2 and 3 in refluxing octane at 128 °C results in the formation of the phosphinidene compounds [(μ-H)2Os3(CO)73-PPh)(μ-dppm)] (4) and [(μ-H)2Os3(CO)73-PCy)(μ-dppm)] (5), respectively, by further P-H bond cleavage of the phosphido groups. All the compounds have been characterized by infrared, 1H NMR, 31P{1H} NMR and mass spectroscopic data together with single-crystal X-ray diffraction studies for 4. Compound 4 consists of a triangular cluster of osmium atoms with a symmetrically capped phosphinidene ligand and a bridging dppm ligand.  相似文献   

19.
Treatment of [Ru3(CO)10(μ-dppm)] (4) [dppm = bis(diphenylphosphido)methane] with tetramethylthiourea at 66 °C gave the previously reported dihydrido triruthenium cluster [Ru3(μ-H)23-S)(CO)7(μ-dppm)] (5) and the new compounds [Ru33-S)2(CO)7(μ-dppm)] (6), [Ru33-S)(CO)73-CO)(μ-dppm)] (7) and [Ru33-S){η1-C(NMe2)2}(CO)63-CO)(μ-dppm)] (8) in 6%, 10%, 32% and 9% yields, respectively. Treatment of 4 with thiourea at the same temperature gave 5 and 7 in 30% and 10% yields, respectively. Compound 7 reacts further with tetramethylthiourea at 66 °C to yield 6 (30%) and a new compound [Ru33-S)21-C(NMe2)2}(CO)6(μ-dppm)] (9) (8%). Thermolysis of 8 in refluxing THF yields 7 in 55% yield. The reaction of 4 with selenium at 66 °C yields the new compounds [Ru33-Se)(CO)73-CO)(μ-dppm)] (10) and [Ru33-Se)(μ33-PhPCH2PPh(C6H4)}(CO)6(μ-CO)] (11) and the known compounds [Ru3(μ-H)23-Se)(CO)7(μ-dppm)] (12) and [Ru43-Se)4(CO)10(μ-dppm)] (13) in 29%, 5%, 2% and 5% yields, respectively. Treatment of 10 with tetramethylthiourea at 66 °C gives the mixed sulfur-selenium compounds [Ru33-S)(μ3-Se)(CO)7(μ-dppm)] (14) and [Ru33-S)(μ3-Se){η1-C(NMe2)2}(CO)6(μ-dppm)] (15) in 38% and 10% yields, respectively. The single-crystal XRD structures of 6, 7, 8, 10, 14 and 15 are reported.  相似文献   

20.
The reaction between 1-pyrenecarboxaldehyde (C16H9CHO) and the labile triosmium cluster [Os3(CO)10(CH3CN)2] gives rise to the formation of two new compounds by competitive oxidative addition between the aldehydic group and an arene C-H bond, to afford the acyl complex [Os3(CO)10(μ-H)(μ-COC16H9)] (1) and the compound [Os3(CO)10(μ-H) (C16H8CHO)] (2), respectively. Thermolysis of [Os3(CO)10(μ-H)(μ-C16H9CO)] (1) in n-octane affords two new complexes in good yields, [Os3(CO)9(μ-H)2(μ-COC16H8)] (3) and the pyryne complex [Os3(CO)9(μ-H)23112-C16H8)] (4).In contrast, when 1-pyrenecarboxaldehyde reacts with [Ru3(CO)12] only one product is obtained, [Ru3(CO)9(μ-H)23112-C16H8)] (5), a nonacarbonyl cluster bearing a pyrene ligand. All compounds were characterized by analytical and spectroscopic data, and crystal structures for 1, 2, 4 and 5 were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号