首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Urea-formaldehyde (UF) microcapsules loaded with linseed oil (LO) and benzotriazole (BTA) as core materials have been synthesized by in situ emulsion polymerization. The capsules were characterized by FTIR spectroscopy and particle size analysis. Surface morphology of the microcapsules was analyzed using scanning electron microscopy (SEM). The microcapsules were incorporated into epoxy resin and coated on a mild steel substrate to form a corrosion resistant organic coating. The self-healing property of coatings loaded with different weight % of microcapsules containing LO + BTA was tested by immersion of the UF coated mild steel specimens in 3.5 wt % NaCl solution. It was analyzed through visual inspection, weight loss measurements, and SEM of the scribed region of coating. It was observed that the addition of microcapsules enhances the corrosion resistance of the scratched samples.

  相似文献   

2.
1‐(2‐Pyrrole carbonyl) benzotriazole (PBTA) and 1‐(2‐thienyl carbonyl)‐benzotriazole (TBTA) were synthesized. Different concentrations of PBTA, TBTA, sodium dodecyl sulphate (SDS), and molybdate (Mo) were evaluated as corrosion inhibitors for copper in ground water medium at different temperatures. The obtained results were compared with the effect of benzotriazole (BTA) on the inhibition of copper corrosion at the same condition. The study was performed using potentiodynamic polarization, electrochemical impedance spectroscopy, cyclic voltammetry, and scanning electron microscopy investigations. A good inhibition is ensured at elevated temperatures. All measurements indicated that PBTA, TBTA, and BTA act as good corrosion inhibitors and their inhibition efficiency (IE%) increased with combining them with optimum concentration of SDS and Mo. Furthermore, the best performance was recorded for the compound PBTA + SDS + Mo, which was found to offer increased IE% in a synergistic manner, thereby acting as a good corrosion inhibitor for copper in ground water medium. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
苯并三唑和8-羟基喹啉对铜的缓蚀协同作用   总被引:12,自引:0,他引:12  
通过电化学极化曲线和电化学阻抗谱研究了苯并三唑(BTA)和8 羟基喹啉(HQ)对铜的缓蚀协同作用, BTA和HQ复配使用后提高了电极的膜电阻,降低了电极的膜电容,增强了对铜腐蚀的抑制作用.通过MM2分子力学程序和PPP SCF量子化学方法优化计算了BTA和HQ的分子结构参数,分析讨论了它们之间的缓蚀协同效应.  相似文献   

4.
This paper demonstrates the ability to grow silica directly on a deposited surface of polyelectrolyte. Using this strategy, we describe the deposition of layered polyelectrolyte-silica coating on negatively charged surfaces of polystyrene particles and latex nanocapsules, which could not be coated directly with silica alone. By etching away the underlying polystyrene bead, we were able to form polyelectrolyte-silica capsules that were mechanically robust. Using scanning and transmission electron microscopy, we imaged and studied the coating after the deposition of each layer of polyelectrolyte and silica. We then applied this new coating to latex nanocapsules that were loaded with fluorescein molecules. We found that the coating procedure did not cause the loaded molecules to leak out from the capsules, and we determined that the variation in the number of loaded molecules among capsules arose from differences in the volume of the nanocavities and was not caused by the loading and coating of the capsules. This layered architecture permits the thickness of the coating to be controlled in principle over a wide dynamic range, but more importantly, this coating could act as an effective seal to prevent undesired leakage from nanocapsules and thus increase the long-term storability of loaded capsules. Over a 30-day period, we determined that leakage from uncoated capsules was significant but negligible for ones that were coated with two layers of polyelectrolyte-silica. Using single-pulse UV photolysis of individual nanocapsules, we demonstrate that the molecules contained within coated capsules could be released effectively and on demand with a single laser pulse.  相似文献   

5.
施锦杰  孙伟 《物理化学学报》2011,27(6):1457-1466
应用腐蚀电位(Ecorr)、极化电阻(Rp)和砂浆保护层电阻率(ρc)研究了苯并三唑(BTA)对钢筋电极腐蚀电化学行为的影响. 通过电化学阻抗谱(EIS)、循环极化(CP)和循环伏安(CV)结果对比了BTA与NaNO2 (SN)对钢筋电极在未处理、预锈蚀和内掺氯盐3种状态下3.5% (w)氯盐浸泡360 d后的阻锈效率. 利用环境扫描电镜(ESEM)与能谱分析(EDS)解释了BTA对水泥基材料中钢筋的阻锈机理. 结果表明: 3种状态下BTA均能明显降低砂浆中钢筋的均匀腐蚀速率, 且其阻锈效率高于SN. 在未处理与预锈状态下, BTA抑制点蚀的能力稍弱于SN; 但在内掺氯盐的状态下, BTA表现出了较大的点蚀阻力. BTA除了能在钢筋表面形成复杂的保护膜, 从而有效抑制氯盐的破钝化作用. ESEM/EDS结果表明BTA还能与砂浆基体形成较多富钙C-S-H凝胶, 可能优化了钢筋/砂浆界面区的孔结构, 形成更致密的微观结构, 显著延缓了氯盐向钢筋表面的传输进程, 较好地保护了钢筋. 适量的BTA对砂浆360 d的基本力学性能无明显影响.  相似文献   

6.
Hollow silica microspheres(HSMSs) have been successfully fabricated via a facile hydrothermal route using D-glucose as the sacrificial template and sodium silicate powder as the silica precursor.The resulting silica hollow particles were characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),and infrared spectroscopy(IR).The surface area was determined using the BET method.SEM and TEM images exhibited micro-sized silica hollow particles with a size of ~1.5μm.  相似文献   

7.
以正硅酸乙酯(TEOS)为硅源,制备介孔二氧化硅纳米微球(MSNs),利用原子转移自由基聚合(ATRP)技术在MSNs表面接枝聚甲基丙烯酸二甲胺乙酯(PDMAEMA)作为缓释开关,成为智能纳米容器(PDMAEMA-MSNs),装载防腐蚀剂-苯并三唑(BTA)验证其双重刺激响应性释放性能。采用透射电子显微镜(TEM)、热重分析(TGA) 、X-射线光电子能谱(XPS)以及傅里叶红外光谱(FT-IR)分析手段表征了MSNs的结构、形貌及表面功能化过程,并使用荧光光谱仪实时监测BTA在不同PH、温度下的释放过程。实验结果表明,智能纳米容器掺杂于SiOx/ZrOy中实现了BTA的双重响应性释放,形成Cu-BTA复合膜,起到铜金属防腐蚀的作用。  相似文献   

8.
Monodisperse hollow carbon nanocapsules (<200 nm) with mesoporous shells were synthesized by coating their outer shells with silica to prevent aggregation during their high‐temperature annealing. Monodispersed silica nanoparticles were used as starting materials and octadecyltrimethoxysilane (C18TMS) was used as a carbon source to create core–shell nanostructures. These core–shell nanoparticles were coated with silica on their outer shell to form a second shell layer. This outer silica shell prevented aggregation during calcination. The samples were characterized by TEM, SEM, dynamic light scattering (DLS), UV/Vis spectroscopy, and by using the Brunauer–Emmett–Teller (BET) method. The as‐synthesized hollow carbon nanoparticles exhibited a high surface area (1123 m2 g?1) and formed stable dispersions in water after the pegylation process. The drug‐loading and drug‐release properties of these hollow carbon nanocapsules were also investigated.  相似文献   

9.
The aim of the present work was to develop the crosslinked polymeric nanocapsules for drug delivery from the SiO2 nano-templates via surface-initiated atom transfer radical polymerization (SI-ATRP) technique. The crosslinked polymeric nanocapsules were fabricated via the SI-ATRP of 2-hydroxyethyl acrylate (HEA) from initiator modified silica nano-templates. After the hydroxyl side-groups of the polymer grafted silica nanoparticles (SN@PHEA) were crosslinked with hexamethylene diisocyanate (HDI), the silica templates encapsulated in the crosslinked polymer shells were removed by being etched with HF to produce the crosslinked polymeric nanocapsules. The diameter of the polymeric nanocapsules is in the range of 20–40 nm, characterized by transmission electron microscopy (TEM).  相似文献   

10.
In the present study, the halloysite nanotubes (HNTs) were loaded with a multicomponent inhibitor (LHNT) comprising mainly benzotriazole (BTA), sodium benzoate (SB), and lauric acid (LA) via the vacuum cycling method. The successful loading of the BTA + LA + SB inhibitor has been confirmed by the TGA, FTIR, and BET analyses. The TGA analysis has determined ~ 14% loading of the BTA + LA + SB into the HNTs. Moreover, UV–vis analysis shows that the time and pH-dependent have incremental release of the multicomponent inhibitor in various studied media. The composite coatings (LHNT COAT) were developed by reinforcing the 3 wt% of LHNTs into the epoxy matrix. The corrosion protection of the developed LHNT COAT was enhanced by 99.6% and 98.88% compared to the blank epoxy and unloaded HNT coatings, respectively. This improvement in the corrosion behavior can be attributed to the active release of the multicomponent inhibitor, as was also demonstrated by the electrochemical impedance spectroscopic (EIS) test. It is further predicted that the improved corrosion inhibition efficiency of LHNT COAT may be due to the formation of some components produced from the reaction of the inhibitor components or from the inhibitor reaction with the corrosive medium. The high corrosion resistance of LHNT COAT makes it attuned to several industrial applications.  相似文献   

11.
In this work, an active nano-catalyst with gold nanoparticles loaded in hollow mesoporous silica nanospheres (HMSNs/Au) was prepared by a one-pot sol-gel method, in which gold ions were loaded in hollow mesoporous silica spheres followed by sodium alginate reduction. The characterization of the HMSNs/Au were determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption–desorption isotherms (BET). The high catalytic activity of HMSNs/Au, denoted as apparent turn-over frequency (TOF), was detected by UV-Vis spectrophotometer for the catalytic reduction of 4-nitrophenol (74.5 h?1) and 2-nitrophenol (108.7 h?1) in the presence of sodium borohydride solution due to the small gold nanoparticles size and overall exposure of active sites. It is expected that this ecofriendly approach to prepare inorganic composited nanoparticles as high active catalysts based on hollow mesoporous materials was a promising platform for loading noble metal nanoparticles.  相似文献   

12.
Mesoporous silica materials with a centered rectangular symmetry (cmm) have been synthesized through a facile direct-templating method using tetraethylorthosilicate (TEOS) and amphiphilic block co-polymers Pluronic P123 under acidic conditions. The amino groups have been grafted to as-synthesized mesoporous silica by [1-(2-amino-ethyl)-3-aminopropyl]trimethoxysilane (AAPTS). Thus obtained amino-functionalized mesoporous silica (denoted as NN-silica) was used for sequestration of Cr(VI) from aqueous solution. After sequestration of Cr(VI), the sample was denoted as Cr(VI)-silica. The parent mesoporous silica, NN-silica and Cr(VI)-silica were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and N(2) adsorption-desorption isotherms. XRD and TEM results confirm that the structure of these samples is centered rectangular symmetry (cmm). N(2) adsorption-desorption isotherms show that there is a remarkable decrease in surface area and pore volume for NN-silica (S(BET)=54.5 m(2)g(-1), V(P)=0.09 cm(3)g(-1)) and Cr(VI)-silica (S(BET)=53.2 m(2)g(-1), V(P)=0.07 cm(3)g(-1)) compared to the parent mesoporous silica (S(BET)=444.0 m(2)g(-1), V(P)=0.71 cm(3)g(-1)). The BJH desorption average diameter of NN-silica, Cr(VI)-silica and the parent mesoporous silica is 4.40 nm, 4.07 nm and 5.11 nm, respectively. The results reveal the channels of as-synthesized mesoporous silica are essentially grafted with abundant amino groups and loaded with Cr(VI). The adsorption experiment results show that the functionalized mesoporous silica materials possess an increased Cr(VI) adsorption capacity and the maximum Cr(VI) loadings at 25, 35 and 45 degrees C can reach 2.28, 2.86 and 3.32 mmol/g, respectively.  相似文献   

13.
Monodisperse CdTe composite microspheres with a spherical shape were prepared using organosilane chemicals in aqueous solution. CdTe nanocrystals (NCs) were loaded into the matrix of silica microspheres during the formation of composite microspheres. Detailed characterization of the CdTe composite microspheres by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and spectrofluorimeter was performed to elucidate the morphology and fluorescence of the composite microspheres. In contrast to CdTe NCs in aqueous solution, CdTe NCs in the composite microspheres revealed high stability and fluorescence due to the confined effects of silica matrix. In addition, multicolored CdTe QDs were encoded into the microspheres at precise ratios.  相似文献   

14.
An efficient type of container for anticorrosion coating based on polyaniline (PANI) modified mesoporous silica (pS) sphere has been first prepared via in‐situ polymerization and surface‐protected etching. The PANI‐modified containers not only show higher concentration of loaded inhibitor than pS, but also protect steel well because of the PANI. The coating with 1H‐benzotriazole (BTA) loaded containers shows significant anticorrosion property because of the release of BTA from containers. The structure and morphology of container are characterized by FTIR, XRD, SEM and TEM. The release of BTA from pS and PANI‐modified containers is determined by UV in water. The possible self‐healing anticorrosion performances are evaluated by EIS and polarization curves which indicate that the coating including BTA‐loaded containers performs best. The strategy of modifying pS by PANI is effective and successful. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
光催化剂Bi1-xGdxVO4的制备和表征及其光催化分解水   总被引:2,自引:0,他引:2  
通过高温固相法合成了不同组分的光催化剂Bi1-xGdxVO4(x=0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0), 并用X射线衍射(XRD)、紫外-可见漫反射光谱(DRS)、比表面积分析(BET)、扫描电子显微镜(SEM)对催化剂Bi1-xGdxVO4进行了表征和分析. XRD结果表明, 在Bi1-xGdxVO4中存在两种结构, 当0.3≤x≤1.0时, Bi1-xGdxVO4为四方晶系硅酸锆型结构; 当x=0时, 为单斜晶系白钨矿结构BiVO4; 当0相似文献   

16.
《印度化学会志》2023,100(6):101013
Through using chemical and electrochemical methods, the theoretical and experimental investigation of the expired vilazodone drug's ability to prevent corrosion on aluminium (Al) in a corrosive medium of HCl (1 M) has been examined. Weighing tests (WL), electrochemical (impedance spectroscopy (EIS), potentiodynamic polarization (PDP)), atomic force microscopy (AFM), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) tests at 25 °C have all been used to investigate Vilazodone's capability to prevent corrosion of Al in 1 M HCl in the concentration in the range of 25–150 ppm. The corrosion inhibition effect of the investigate Vilazodone's against Al in acid environment was investigated weight loss and electrochemical methods. The highest % inhibition efficiency (%IE) was 95% resulted from weight loss technique at the highest concentration for inhibitor. According to the PDP data, this examined vilazodone function as a mixed-type inhibitor, impacting both the anodic and cathodic reactions. The inhibitors covered the active points of the metal surface, according to electrochemical impedance spectroscopy (EIS), to prevent corrosion. It was discovered that the inhibitor adsorption on the Al surface obeyed the Langmuir adsorption isothermal model. AFM, SEM, and FTIR surface examinations proved the inhibitor had a significant protective effect against Al dissolution in 1 M HCl. The outcomes from chemical and electrochemical methods are relatively consistent. Vilazodone acted as an effective corrosion inhibitor, according to all of the experimental data.  相似文献   

17.
TiO2 loaded on several substrates such as carbon fiber, aluminum plate, silica plate, and glass plate was prepared using the chemical vapor deposition (CVD) method for the photocatalytic reduction of Cr(VI) in water with the presence of ethanol under Ultraviolet (UV) illumination. As‐prepared samples were characterized by X‐Ray Diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), and scanning electron microscopy (SEM). The catalyst with TiO2 loaded on carbon fiber possessed an extremely large surface area (1,463,91 m2/g), while the other catalysts possessed small surface areas (0.05–0.21 m2/g). The photocatalytic activity of TiO2 loaded on carbon fiber, which was determined by the conversion of Cr(VI) and the degradation of chemical oxygen demand (COD), was much higher than that of other catalysts. The reusability of TiO2 loaded on carbon fiber catalyst exhibited almost the same activity as the fresh catalyst. The results indicated that TiO2 loaded on carbon fiber is feasible for practical application.  相似文献   

18.
During oil production, significant quantities of water are produced with the crude oil which, following treatment on the platform, are discharged to the marine environment. This produced water contains residues of oilfield chemicals added by the platform operators to the topside processing equipment to aid oil-water separation and mitigate operational problems. The levels of oilfield chemicals entering the marine environment via this route were investigated using electrospray ionisation tandem mass spectrometry (ESI-MS/MS) and wet chemical analysis techniques. The generic nature of different chemical types was shown by ESI-MS/MS. Studies of the partitioning behaviour of corrosion inhibitors and demulsifiers between the oil and water phases of the produced fluids suggested corrosion inhibitors partitioned primarily into the aqueous phase and demulsifiers into the oil phase. This was reflected in levels observed in produced water although, in the case of a corrosion inhibitor, lower than expected concentrations were measured. Scale inhibitors were discharged with the produced water at their dosing concentrations. Marine sediments in the proximity of two North Sea oil platforms contained low levels of benzalkonium quaternary ammonium salts (0.74-10.84 ng/g), typical corrosion inhibitor chemicals.  相似文献   

19.
This paper reports on a new method for the preparation of mesoporous silica membranes on alumina hollow fibers. A surfactant-silica sol is filled in the lumen of an alpha-alumina hollow fiber. The filtration technique combined with an evaporation-induced self-assembly (EISA) process results in the formation of a continuous ordered mesoporous silica layer on the outer side of alpha-alumina hollow fibers. X-ray diffraction (XRD), transmission electron microscopy (TEM), and nitrogen isothermal adsorption measurements reveal that these membranes possess hexagonal (P6mm) mesostructures with pore diameters of 4.48 nm and BET surfaces of 492.3 m(2) g(-1). Scanning electron microscopy (SEM) studies show that the layers are defect free and energy-dispersive spectroscopy (EDS) mapping images further confirm the formation of continuous mesoporous silica layer on the outer side of alpha-alumina hollow fibers. Nitrogen and hydrogen permeance tests show that the membranes are defect free.  相似文献   

20.
A method for the fabrication of hollow silica nanospheres, a facile one‐pot hydrothermal route, is described. Heating of an aqueous solution of water glass and D ‐glucose to 180 °C for 24 h affords—as indicated by transmission electron microscopy—a nanospherical composite consisting of a silica shell sheathing a carbonaceous core. Subsequent removal of the carbonaceous interior through oxidation in air produces hollow silica structures. Variation of the concentration of the two jointly dissolved chemicals enables a variation of the thickness of the silica shell. The hollow silica particles were characterized by means of SEM, TEM, XRD, IR spectroscopy, thermogravimetrical analysis (TGA), and sorption measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号