首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lead (Pb) emission intensity (atomic line 405.78 nm) dependence on the sample matrix (metal alloy) was studied by means of collinear double pulse (DP)-laser induced breakdown spectroscopy (LIBS). The measurement of the emission intensity produced by three different wavelength combinations (i.e. I:532 nm–II:1064 nm, I:532 nm–II:532 nm, and I:532 nm–II:355 nm) from three series of standard reference materials showed that the lead atomic line 405.78 nm emission intensity was dependent on the sample matrix for all the combination of wavelengths, however reduced dependency was found for the wavelength combination I:532 nm–II:355 nm.  相似文献   

2.
The performance of the pulsed-laser atom probe can be limited by both instrument and specimen factors. The experiments described in this article were designed to identify these factors so as to provide direction for further instrument and specimen development. Good agreement between voltage-pulsed and laser-pulsed data is found when the effective pulse fraction is less than 0.2 for pulsed-laser mode. Under the conditions reported in this article, the thermal tails of the peaks in the mass spectra did not show any significant change when produced with either a 10-ps or a 120-fs pulsed-laser source. Mass resolving power generally improves as the laser spot size and laser wavelength are decreased and as the specimen tip radius, specimen taper angle, and thermal diffusivity of the specimen material are increased. However, it is shown that two of the materials used in this study, aluminum and stainless steel, depend on these factors differently. A one-dimensional heat flow model is explored to explain these differences. The model correctly predicts the behavior of the aluminum samples, but breaks down for the stainless steel samples when the tip radius is large. A more accurate three-dimensional model is needed to overcome these discrepancies.  相似文献   

3.
本文分别用1064nm, 532nm和 355nm激发波长的YAG脉冲激光对所制备的phase Ⅱ结构钒氧酞菁膜Al\phase ⅡVOPc\ITO夹心电池进行瞬态光电压响应研究.随着3种波长激发光脉冲强度的增加, 瞬态光电压信号均增强. 激发光波长1064nm、532nm处于酞菁膜Q-带吸收区肩部, 光电压的极性与激发光入射方向无关, 均为负信号; 而激发光波长 355nm处于酞菁膜B-带, 光电压的极性与激发光入射方向有关, 从ITO极方向激发产生正电压信号, 从A1极激发产生负电压信号. 激发光波长对夹心电池的光电压产生有明显的作用, 光电压产生过程中应存在不同的机理. 这与前文[1]对同一夹心电池稳态光电压响应研究所推断的结论一致.  相似文献   

4.
Nanosecond (lambda exc = 266, 355 and 532 nm) and picosecond (lambda exc = 355 nm) laser flash photolysis of hematoporphyrin (Hp) was performed in neutral (pH 7.4) and alkaline (pH 12) aqueous solution, as well as in the presence of 0.1% Triton X-100. The dependence of the yield of photoproduced hydrated electrons (e-aq) on laser pulse energy was studied over a wide range of energies (0.2 to greater than 1000 mJ cm-2). The results show that e-aq are predominantly formed in a two-photon process at lambda exc = 266 and 355 nm. One-photon quantum yields are higher at lambda exc = 266 nm than at lambda exc = 355 nm. Both one-photon and two-photon pathways are less efficient at higher Hp concentration, reflecting the influence of Hp self-aggregation. Two-photon e-aq formation is more efficient when 30 ps pulses are used for excitation, as compared to 10 ns pulses. No e-aq could be detected at lambda exc = 532 nm. Nanosecond pulse-induced transient spectra obtained at pH 7.4 are also discussed.  相似文献   

5.
The photoreduction of oxidized bovine heart cytochrome c oxidase (CcO) by visible and UV radiation was investigated in the absence and presence of external reagents. In the former case, the quantum yields for direct photoreduction of heme A (heme a + heme a(3)) were 2.6 +/- 0.5 x 10(-3), 4 +/- 1 x 10(-4), and 4 +/- 2 x 10(-6) with pulsed laser irradiation at 266, 355 and 532 nm, respectively. Within experimental uncertainty, the quantum yields did not depend on pulse energy, implying that the mechanism is monophotonic. Irradiation with 355 nm light resulted in spectral changes similar to those produced independently by reduction with dithionite, whereby the low-spin heme a and Cu(A) are reduced first. Extended illumination at 355 and 532 nm yielded substantial amounts of reduced heme a(3). Heme decomposition was noted with 266 nm light. In the presence of formate and cyanide ions, which bind at the binuclear heme a(3)/copper center in CcO, irradiation at 355 nm caused selective reduction of only the low-spin heme a and Cu(A). The addition of ferrioxalate ion dramatically increased the efficiency of cytochrome c oxidase photoreduction. The quantum efficiency for heme A reduction was found to be near unity, significantly greater than for other known methods of photoreduction. The active reductant is most likely ferrous iron, and its reduction of the enzyme is thermodynamically driven by the reformation of ferrioxalate in the presence of excess oxalate ion. Other metalloenzymes with redox potentials similar to those of cytochrome c oxidase should be amenable to indirect photoreduction by this method.  相似文献   

6.
The combination of remote/standoff sensing and laser-induced fluorescence (LIF) spectroscopy shows potential for detection of uranyl (UO2(2+)) compounds. Uranyl compounds exhibit characteristic emission in the 450-600 nm (22,200 to 16,700 cm(-1)) spectral region when excited by wavelengths in the ultraviolet or in the short-wavelength portion of the visible spectrum. We report a parametric study of the effects of excitation wavelength [including 532 nm (18,797 cm(-1)), 355 nm (28,169 cm(-1)), and 266 nm (37,594 cm(-1))] and excitation laser power on solid-state uranium compounds. The uranium compounds investigated include uranyl nitrate, uranyl sulfate, uranyl oxalate, uranium dioxide, triuranium octaoxide, uranyl acetate, uranyl formate, zinc uranyl acetate, and uranyl phosphate. We observed the characteristic uranyl fluorescence spectrum from the uranium compounds except for uranium oxide compounds (which do not contain the uranyl moiety) and for uranyl formate, which has a low fluorescence quantum yield. Relative uranyl fluorescence intensity is greatest for 355 nm excitation, and the order of decreasing fluorescence intensity with excitation wavelength (relative intensity/laser output) is 355 nm > 266 nm > 532 nm. For 532 nm excitation, the emission spectrum is produced by two-photon excitation. Uranyl fluorescence intensity increases linearly with increasing laser power, but the rate of fluorescence intensity increase is different for different emission bands.  相似文献   

7.
A gigawatt laser-induced Coulomb explosion has been observed in carbon disulphide (CS(2)) clusters generating energetic, multiply charged [C](m+) (m = 1-4) and [S](n+) (n = 1-6) atomic ions of carbon and sulphur. The Coulomb explosion shows wavelength dependence. Comparison of these results with our earlier work shows that the polarizability and dipole moment might help in energy absorption from the laser field but they are not mandatory conditions for this low-intensity Coulomb explosion. The results show that in a field of 10(9) W/cm(2), absorption of 266 and 355 nm laser radiation by CS(2) clusters leads to multiphoton dissociation/ionization whereas at 532 nm the whole cluster explodes generating multiply charged atomic ions.  相似文献   

8.
A XeCl laser and a Q-switched Nd:YAG laser operating at 1064, 532, 355 and 266 nm were used to ablate brass materials with varying concentrations of Zn and Cu. The ablated material was transported to an inductively coupled plasma for further atomization, excitation and ionization with an atomic emission spectrometric detection. A Zn enhancement was observed, which could be suppressed by using a Nd:YAG laser working at 266 nm with fluences higher than 400 J cm−2 (equivalent to 80 GW cm−2). In contrast, a lack of linearity was observed for Cu as a function of the concentration, regardless of the wavelength and the fluence. The Cu problem seemed to occur during the ablation and was related to the structure of the brass material. Lack of linearity was also observed for Zn and other contained elements when samples from different origins were used.  相似文献   

9.
Systematic manipulation of ionic-outcome in laser-cluster interaction process has been realized for studies carried out on tetramethyltin (TMT) clusters under picosecond laser conditions, determined by choice of laser wavelength and intensity. As a function of laser intensity, TMT clusters exhibit gradual enhancement in overall ionization of its cluster constituents, up to a saturation level of ionization, which was distinct for different wavelengths (266, 355, and 532 nm). Simultaneously, systematic appearance of higher multiply charged atomic ions and shift in relative abundance of multiply charged atomic ions towards higher charge state was observed, using time-of-flight mass spectrometer. At saturation level, multiply charged atomic ions up to (C2+, Sn2+) at 266 nm, (C4+, Sn4+) at 355 nm, and (C4+, Sn6+) at 532 nm were detected. In addition, at 355 nm intra-cluster ion chemistry within the ionized cluster leads to generation of molecular hydrogen ion (H2 +) and triatomic molecular hydrogen ion (H3 +). Generation of multiply charged atomic ions is ascribed to efficient coupling of laser pulse with the cluster media, facilitated by inner-ionized electrons produced within the cluster, at the leading edge of laser pulse. Role of inner-ionized electrons is authenticated by measuring kinetic energy distribution of electrons liberated upon disintegration of excessively ionized cluster, under the influence of picosecond laser pulse.
Graphical Abstract ?
  相似文献   

10.
The wavelength dependence of photosubstitution, photoinduced electron transfer, and the time-resolved spectra of Cr(CNPh)6, a compound having low-lying MLCT states, were investigated. Photosubstitution quantum yields increase with increasing excitation energy while photoinduced electron transfer quantum yields decrease with increasing excitation energy. At the lowest excitation energy used (532 nm, or 18,800 cm(-1)), the quantum yields for both electron transfer and photosubstitution reach the same maximum value, 0.29. Picosecond time-resolved absorption spectra at 355 and 532 nm excitation wavelengths show two features: a bleach signal centered at 400 nm and an excited state absorption (ESA) in the 600 nm region. The ESA signal is much weaker for 532 nm excitations than for 355 nm excitations. Following a 355 nm flash, the bleach and ESA decay exponentially with the same lifetime of 23 micros. This implies a simple ligand dissociation followed by recombination. Bleach recovery kinetics after a 532 nm flash are more complicated: two or three exponential components are required to fit the data. Cr(CNPh)6 exhibits two photochemical mechanisms: at high excitation energy, a simple charge neutral dissociation occurs; at low energy, it is proposed that a phenylisocyanide radical anion dissociates, forming a radical pair that is responsible for the observed substitution and electron transfer reactivity, and the complicated nanosecond kinetics. The primary processes for both reactions occur in less than 20 ps.  相似文献   

11.
Using time‐of‐flight mass spectrometry (TOFMS), laser‐induced photochemistry of ethyl bromide clusters has been investigated at three different wavelengths (viz. 266, 355 and 532 nm) utilizing nanosecond laser pulses of ~5 × 109 W/cm2. An interesting finding of the present work is the observation of multiply charged atomic ions of carbon and bromine at 355 and 532 nm, arising from the Coulomb explosion of (C2H5Br)n clusters. At 266 nm, however, the (C2H5Br)n clusters were found to exhibit the usual multiphoton dissociation/ionization behaviour. The TOFMS studies are complemented by measuring the total charge density of the ionized volume at 266, 355 and 532 nm, using the parallel plate method, and the charge densities were found to be ~2 × 109, 6 × 109 and 2 × 1011 charges/cm3, respectively. The significantly higher charge density and the presence of energetic, multiply charged atomic ions at 532 nm are explained by the higher ponderomotive energy of the 532 nm photon, coupled with the Coulomb stability of the residual multiply charged ethyl bromide clusters generated upon laser irradiation, due to their larger effective cluster size at 532 nm than at 355 and 266 nm. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Yamada S  Shinno I 《Talanta》1989,36(9):937-940
Novel two- and three-wavelength laser multiphoton ionization techniques for highly sensitive detection in solution have been established. The photocurrent signal obtained for benzo[a]pyrene by irradiation at 355 nm in n-heptane was effectively enhanced by additional simultaneous irradiation at 532 and/or 1064 nm. The additional irradiation at 532 nm (5 mJ) doubled the signal-to-noise ratio, while that at 1064 nm (30 mJ) increased it 5.5-fold relative to that obtained when only the 355 nm radiation was used. The simultaneous action of 355, 532 (5 mJ) and 1064 (25 mJ) nm radiation further improved the S/N ratio; the detection limit was as low as 1.9 x 10(-10)M. The 532 nm radiation enhanced the photocurrent signal more effectively than did the 1064 nm radiation.  相似文献   

13.
The photoionization of seeded benzene beam by 25 ns laser pulse at wavelengths of 266,355 and 1064 nm has been studied by the time-of-flight mass spectrometry. The observed mass spectra at 266 nm and 355 nm at intensities of 1010-1011 W/cm2 indicate a multiphoton ionization and dissociation(MPID)process,in which C+,C2Hx+,C3Hx+,C4Hx+ and C6H6+ are main products. While at 1064 nm laser of similar intensities,the domain ion is C4+ which is produced from Coulomb explosion. The longer wavelength facilities the energy absorption rate during inverse bremsstrahlung,which leads to the resulting wavelength dependence of the multicharged atomic ions.  相似文献   

14.
由于含有偶氮苯染料侧基,聚(氨酯-酰亚胺)(PUI)对532nm的光具有较强的吸收.采用该波长的可见偏振脉冲激光(Nd∶YAG激光器的倍频输出),在PUI薄膜表面制备了激光诱导周期性表面微结构(LIPSS).研究了染料引入方式以及染料侧基含量对微结构形成过程的影响,讨论了入射角、激光脉冲数、激光脉宽等激光辐射条件对LIPSS形成过程以及对微结构形貌和周期性的影响.  相似文献   

15.
Three/two-photon resonant multiphoton ionization (MPI) of the CH3I monomer has been studied in the gas phase at 532 and 355 nm using time-of-flight mass spectrometry. Under low laser intensity (approximately 10(9) W/cm2) the mass spectra showed peaks at m/z 15, 127 and 142, corresponding to [CH3]+, [I]+ and [CH3I]+ species, at both these wavelengths. The laser power dependence for [CH3I]+, [I]+ and [CH3]+ ions showed a three-photon dependence at 532 nm. For the same three ions, photoionization studies at 355 nm gave a power dependence of 2. Both these results suggest that a vibronic energy level at approximately 7 eV, lying in the Rydberg C state, acts as a resonant intermediate level in ionization of CH3I. In the case of 355 nm, with increasing intensity additional peaks at m/z 139 and 141 were observed which could be assigned to [CI]+ and [CH2I]+ fragments. In contrast, for high intensity radiation at 532 nm ( approximately 2 x 10(10) W/cm2), only the [CI]+ fragment was observed. At these wavelengths, fragment ions observed in mass spectra mainly arise from photodissociation of the parent ion. Experiments at another wavelength in the visible region (564.2 nm) confirmed the results obtained at 532 nm. In order to assess the role of the A state in these MPI experiments, additional experiments were performed at 266 and 282.1 nm, which access the A state directly via a one-photon transition, and showed absence of a surviving precursor ion. Reaction energies for various possible dissociation channels of CH3I/[CH3I]+/[CH2I]+ were calculated theoretically at the MP2 level using the GAMESS electronic structure program.  相似文献   

16.
Laser ablation inductively coupled plasma mass spectrometry (laser ablation-ICP-MS) has been applied to the spatially resolved determination of the elements Mg, Ca, Cu, Ni, Ba, Al, Pb, Sr and Mn in green leaves of oak trees. Instrument operating parameters such as the laser wavelength and the pulse energy have been optimized to provide the sensitivity and reproducibility required for the analysis. The method provides spatial resolution down to 300 microm with the use of the 355 nm wavelength (3rd harmonic of the 1,064 nm Nd:YAG laser wavelength) and the pulse energy of 50 mJ. Plant standards and cellulose, doped with multi element solution standards, dried and pressed to pellets were used as calibration samples. To compensate for signal fluctuations caused by the variation of the ablated sample mass 13C was used as a "natural" internal standard. The accuracy of the calibration was verified with selected samples analyzed by ICP-MS (high pressure digestion, 170 degrees C, 10(7) Pa, HNO3, 2 h) and by laser ablation-ICP-MS. Recovery rates between 93% (Cu) and 108% (Mn) were obtained. Leaves taken from oak trees (Quercus robur) were analyzed.  相似文献   

17.
The detection sensitivity of laser-induced breakdown spectroscopy (LIBS) is improved by coupling it with a laser-induced fluorescence method. A waterjet sample containing 500 ppm of Pb as an analyte was ablated by a 266 nm, frequency-quadrupled Q-switchedNd:YAG laser at an energy of ~ 260 μJ. After a short delay the resulting plume was re-excited with a 283.306 nm, nanosecond pulse dye laser at energies ranging from 45 to 100 nJ. The limit of detection (LOD) of lead in water was determined both by the single-pulse LIBS technique and Laser Ablation coupled with Laser-Induced Fluorecence (LA–LIF) method. It was found to be 75 ppm in the case of single-pulse LIBS and 4.3 ppm for LA–LIF. When the resonant pulse was detuned from the transition wavelength the LA–LIF signal disappeared demonstrating the resonant selectivity of this technique.  相似文献   

18.
This article summarizes findings from our previous investigations and recent studies concerning precipitation in a maraging steel of type 13Cr-9Ni-2Mo-2Cu (at.%) with small additions of Ti (1 at.%) and Al (0.7 at.%). The material was investigated after aging at 475 degrees C up to 400 h using both conventional and three-dimensional atom-probe analyses. The process of phase decomposition in the steel proved to be complicated. It consisted of precipitation of several phases with different chemistry. A Cu-rich phase was first to precipitate and Mo was last in the precipitation sequence. The influence of the complex precipitation path on the material properties is discussed. The investigation clearly demonstrated the usefulness of the applied techniques for investigation of nanoscale precipitation. It is also shown that, complementary methods (such as TEM and EFTEM) giving structural and chemical information on a larger scale must be applied to explain the good properties of the steel after prolonged aging.  相似文献   

19.
Visible matrix-assisted laser desorption/ionization (VIS-MALDI) was performed using 2-amino-3-nitrophenol as matrix. The matrix is of near-neutral pH, and has an optical absorption band in the near-UV and visible region. A frequency-doubled Nd:YAG laser operated at 532 nm wavelength was used for matrix excitation and comparisons were made with a frequency-tripled Nd:YAG laser (355 nm). Visible and ultraviolet (UV)-MALDI produce similar mass spectra for peptides, polymers, and small proteins with comparable sensitivities. Due to the smaller optical absorption coefficient of the matrix at 532 nm wavelength, the optical penetration depth is larger, and the sample consumption per laser shot in VIS-MALDI is higher than that of UV-MALDI. Nevertheless, VIS-MALDI using 2-amino-3-nitrophenol as matrix may offer a complementary technique to the conventional UV-MALDI method in applications where deeper laser penetration is required.  相似文献   

20.
Dual-pulse (DP) laser-induced breakdown spectroscopy (LIBS) provides significant improvement in signal intensity as compared to conventional single-pulse LIBS. We investigated collinear DPLIBS experimental performance using various laser wavelength combinations employing 1064 nm, 532 nm, and 266 nm Nd:YAG lasers. In particular, the role of the pre-pulse laser wavelength, inter-pulse delay times, and energies of the reheating pulses on LIBS sensitivity improvements is studied. Wavelengths of 1064 nm, 532 nm, and 266 nm pulses were used for generating pre-pulse plasma while 1064 nm pulse was used for reheating the pre-formed plasma generated by the pre-pulse. Significant emission intensity enhancement is noticed for all reheated plasma regardless of the pre-pulse excitation beam wavelength compared to single pulse LIBS. A dual peak in signal enhancement was observed for different inter-pulse delays, especially for 1064:1064 nm combinations, which is explained based on temperature measurement and shockwave expansion phenomenon. Our results also show that 266 nm:1064 nm combination provided maximum absolute signal intensity as compared to 1064 nm:1064 nm or 532 nm:1064 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号