首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The knowledge of thermochemical parameters such as the enthalpy of formation, gas-phase basicity, and proton affinity may be the key to understanding molecular reactivity. The obtention of these thermochemical parameters by theoretical chemical models may be advantageous when experimental measurements are difficult to accomplish. The development of ab initio composite models represents a major advance in the obtention of these thermochemical parameters, but these methods do not always lead to accurate values. Aiming at achieving a comparison between the ab initio models and the hybrid models based on the density functional theory (DFT), we have studied gamma-butyrolactone and 2-pyrrolidinone with a goal of obtaining high-quality thermochemical parameters using the composite chemical models G2, G2MP2, MP2, G3, CBS-Q, CBS-4, and CBS-QB3; the DFT methods B3LYP, B3P86, PW91PW91, mPW1PW, and B98; and the basis sets 6-31G(d), 6-31+G(d), 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p), 6-311G(d), 6-311+G(d), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ. Values obtained for the enthalpies of formation, proton affinity, and gas-phase basicity of the two target molecules were compared to the experimental data reported in the literature. The best results were achieved with the use of DFT models, and the B3LYP method led to the most accurate data.  相似文献   

2.
Ab initio molecular orbital calculations are reported for small neutral molecules and cations containing magnesium, nitrogen and hydrogen. Structures have been optimized using gradient techniques at B3LYP/6-31+G(d) and at MP2(full)/6-311++G(d,p). Single-point calculations are reported at QCISD(T)(full)/6-311++G(2df,p) and at CCSD(T)(full)/6-311++G(2df,p) levels using geometries optimized at MP2(full)/6-311++G(d,p). Standard enthalpies of formation at 298 K have been calculated at these two higher levels of theory. Other thermochemical properties calculated include ionization energies and proton affinities. The binding enthalpies of ammonia to Mg+, MgNH2+ and MgNH3+ are also reported.  相似文献   

3.
The B3LYP/6-31+G(d) molecular geometry optimized structures of 17 five-membered heterocycles were employed together with the gauge including atomic orbitals (GIAO) density functional theory (DFT) method at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p) and B3LYP/6-311+G(2d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants. The method of geometry optimization for pyrrole (1), N-methylpyrrole (2) and thiophene (7) using the larger 6-311++G(d,p) basis sets at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,p) and B3LYP/cc-pVTZ levels of theory gave little difference between calculated and experimental values of coupling constants. In general, the (1)H and 13C chemical shifts for all compounds are in good agreement with theoretical calculations using the smaller 6-31 basis set. The values of nJHH(n=3, 4, 5) and rmnJ(CH)(n=1, 2, 3, 4) were predicted well using the larger 6-31+G(d,p) and 6-311++G(d,p) basis sets and at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p) levels of theory. The computed atomic charges [Mülliken; Natural Bond Orbital Analysis (NBO); Merz-Kollman (MK); CHELP and CHELPG] for the B3LYP/6-311++G(d,p) geometry optimized structures of 1-17 were used to explore correlations with the experimental proton and carbon chemical shifts.  相似文献   

4.
Energies of different conformers of 22 amino acid molecules and their protonated and deprotonated species were calculated by some density functional theory (DFT; SVWN, B3LYP, B3PW91, MPWB1K, BHandHLYP) and wave function theory (WFT; HF, MP2) methods with the 6-311++G(d,p) basis set to obtain the relative conformer energies, vertical electron detachment energies, deprotonation energies, and proton affinities. Taking the CCSD/6-311++G(d,p) results as the references, the performances of the tested DFT and WFT methods for amino acids with various intramolecular hydrogen bonds were determined. The BHandHLYP method was the best overall performer among the tested DFT methods, and its accuracy was even better than that of the more expensive MP2 method. The computational dependencies of the five DFT methods and the HF and MP2 methods on the basis sets were further examined with the 6-31G(d,p), 6-311++G(d,p), aug-cc-pVDZ, 6-311++G(2df,p), and aug-cc-pVTZ basis sets. The differences between the small and large basis set results have decreased quickly for the hybrid generalized gradient approximation (GGA) methods. The basis set convergence of the MP2 results has been, however, very slow. Considering both the cost and the accuracy, the BHandHLYP functional with the 6-311++G(d,p) basis set is the best choice for the amino acid systems that are rich in hydrogen bonds.  相似文献   

5.
A dual-level direct dynamics study has been carried out for the two hydrogen abstraction reactions CF(3)CHCl(2)+Cl and CF(3)CHFCl+Cl. The geometries and frequencies of the stationary points are optimized at the BHLYP/6-311G(d,p), B3LYP/6-311G(d,p), and MP2/6-31G(d) levels, respectively, with single-point calculations for energy at the BHLYP/6-311++G(3df,2p), G3(MP2), and QCISD(T)/6-311G(d,p) levels. The enthalpies of formation for the species CF(3)CHCl(2), CF(3)CHFCl, CF(3)CCl(2), and CF(3)CFCl are evaluated at higher levels. With the information of the potential energy surface at BHLYP/6-311++G(3df,2p)//6-311G(d,p) level, we employ canonical variational transition-state theory with small-curvature tunneling correction to calculate the rate constants. The agreement between theoretical and experimental rate constants is good in the measured temperature range 276-382 K. The effect of fluorine substitution on reactivity of the C-H bond is discussed.  相似文献   

6.
A model based on classical concepts is derived to describe the effect of the nitro group on proton chemical shifts. The calculated chemical shifts are then compared to ab initio (GIAO) calculated chemical shifts. The accuracy of the two models is assessed using proton chemical shifts of a set of rigid organic nitro compounds that are fully assigned in CDCl3 at 700 MHz. The two methods are then used to evaluate the accuracy of different popular post-SCF methods (B3LYP and MP2) and molecular mechanics methods (MMX and MMFF94) in calculating the molecular structure of a set of sterically crowded nitro aromatic compounds. Both models perform well on the rigid molecules used as a test set, although when using the GIAO method a general overestimation of the deshielding of protons near the nitro group is observed. The analysis of the sterically crowded molecules shows that the very popular B3LYP/6-31G(d,p) method produces very poor twist angles for these, and that using a larger basis set [6-311++G(2d,p)] gives much more reasonable results. The MP2 calculations, on the other hand, overestimate the twist angles, which for these compounds compensates for the deshielding effect generally observed for protons near electronegative atoms when using the GIAO method at the B3LYP/6-311++G(2d,p) level. The most accurate results are found when the structures are calculated using B3LYP/6-311++G(2d,p) level of theory, and the chemical shifts are calculated using the CHARGE program based on classical models.  相似文献   

7.
A comprehensive exploration of the aminolysis mechanism for methyl indole-3-acetate with ammonia is carried out by employing the B3 LYP/6-311++G(d,p), M06-2 X/6-311++G(d,p) and MP2/6-311++G(d,p)//M06-2 X/6-311++G(d,p) levels. Two alterative reaction channels of the concerted and addition/elimination stepwise processes including the uncatalyzed, base-catalyzed reactions are taken into consideration. Subsequently, the substituent effects and solvent effects in methanol are also evaluated at the M06-2 X/6-311++G(d,p) level. The calculated results indicate that the calculated values of M06-2 X level are quite close to those of MP2, the stepwise pathway has more advantages to the concerted one for all of the reaction processes and the catalyst facilitates the proton migration and decreases the energy barriers as well. It is shown that the most preferred mechanism is the based-catalyzed stepwise process, the substituent of NH2 group slightly accelerates all the aminolysis reaction processes, and the solvent effect does not remarkably change the mechanism of the reaction.  相似文献   

8.
In this paper a new scheme was proposed to calculate the intramolecular hydrogen-bonding energies in peptides and was applied to calculate the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies of the glycine and alanine peptides. The density-functional theory B3LYP6-31G(d) and B3LYP6-311G(d,p) methods and the second-order Moller-Plesset perturbation theory MP26-31G(d) method were used to calculate the optimal geometries and frequencies of glycine and alanine peptides and related structures. MP26-311++G(d,p), MP26-311++G(3df,2p), and MP2/aug-cc-pVTZ methods were then used to evaluate the single-point energies. It was found that the B3LYP6-31G(d), MP26-31G(d), and B3LYP6-311G(d,p) methods yield almost similar structural parameters for the conformers of the glycine and alanine dipeptides. MP2/aug-cc-pVTZ predicts that the intramolecular seven-membered ring N-H...O=C hydrogen-bonding strength has a value of 5.54 kcal/mol in glycine dipeptide and 5.73 and 5.19 kcal/mol in alanine dipeptides, while the steric repulsive interactions of the seven-membered ring conformers are 4.13 kcal/mol in glycine dipeptide and 6.62 and 3.71 kcal/mol in alanine dipeptides. It was also found that MP26-311++G(3df,2p) gives as accurate intramolecular N-H...O=C hydrogen-bonding energies and steric repulsive interactions as the much more costly MP2/aug-cc-pVTZ does.  相似文献   

9.
The multidimensional Conformational Potential Energy Hypersurface (PEHS) of cyclotrisarcosyl was comprehensively investigated at the DFT (B3LYP/6-31G(d), B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p)), levels of theory. The equilibrium structures, their relative stability, and the Transition State (TS) structures involved in the conformational interconversion pathways were analyzed. Aug-cc-pVTZ//B3LYP/6-311++G(d,p) and MP2/6-31G(d)//B3LYP/6-311++G(d,p) single point calculations predict a symmetric cis-cis-cis crown conformation as the energetically preferred form for this compound, which is in agreement with the experimental data. The conformational interconversion between the global minimum and the twist form requires 20.88 kcal mol-1 at the MP2/6-31G(d)//B3LYP/6-311++G(d,p) level of theory. Our results allow us to form a concise idea about the internal intricacies of the PEHSs of this cyclic tripeptide, describing the conformations as well as the conformational interconversion processes in this hypersurface. In addition, a comparative analysis between the conformational behaviors of cyclotrisarcosyl with that previously reported for cyclotriglycine was carried out  相似文献   

10.
Hartree-Fock (HF) calculations using 6-31G*, 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets show that hydrogen peroxide molecular clusters tend to form hydrogen-bonded cyclic and cage structures along the lines expected of a molecule which can act as a proton donor as well as an acceptor. These results are reiterated by density functional theoretic (DFT) calculations with B3LYP parametrization and also by second-order M?ller-Plesset perturbation (MP2) theory using 6-31G* and 6-311++G(d,p) basis sets. Trends in stabilization energies and geometrical parameters obtained at the HF level using 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets are similar to those obtained from HF/6-31G* calculation. In addition, the HF calculations suggest the formation of stable helical structures for larger clusters, provided the neighbors form an open book structure.  相似文献   

11.
The full conformational space was explored for an achiral and two chiral beta-peptide models: namely For-beta-Ala-NH2, For-beta-Abu-NH2, and For-beta-Aib-NH2. Stability and conformational properties of all three model systems were computed at different levels of theory: RHF/3-21G, B3LYP/6-311++G(d,p)//RHF/3-21G, B3LYP/6-311++G(d,p), MP2//B3LYP/6-311++G(d,p), CCSD//B3LYP/6-311++G(d,p), and CCSD(T)//B3LYP/6-311++G(d,p). In addition, ab initio E = E(phi, micro, psi) potential energy hypersurfaces of all three models were determined, and their topologies were analyzed to determine the inherent flexibility properties of these beta-peptide models. Fewer points were found and assigned than expected on the basis of Multidimensional Conformational Analysis (MDCA). Furthermore, it has been demonstrated, that the four-dimensional surface, E = E(phi, mu, psi), can be reduced into a three-dimensional one: E = E[phi, f(phi), psi]. This reduction of dimensionality of freedom of motion suggests that beta-peptides are less flexible than one would have thought. This agrees with experimental data published on the conformational properties of peptides composed of beta-amino acid residues.  相似文献   

12.
张愚  王一波  孙泽民  田安民 《化学学报》1999,57(10):1123-1128
在MP2/6-311++G(3d,3p)水平,对PH~3...H~2O体系可能存在的氢键复合物进行了全自由度能量梯度优化,发现PH~3...H~2O体系存在三个能量极小结构A,B和C。其中结构A和B以H~2O作为质子授体,结构C以PH~3作为质子授体,结构A较结构B和C分别稳定6.52kJ/mol和8.18kJ/mol。结构A具有C~s对称性,其结构中P原子和O原子间距离为354.78nm,键角OHP为171.35ⅲ,属于接近于直线的传统型氢键结构。进一步在高级电子相关校正的MP4SDTQ下,用6-311++G(3df,3pd)基加上键函数{3s3p2d1f},通过BSSE校正,精确计算了结构A的结合能为-10.84kJ/mol。  相似文献   

13.
The GIAO (Gauge Including Atomic Orbitals) DFT (Density Functional Theory) method is applied at the B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311+G (2d,p)//B3LYP/6-31+G(d) and B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants for 25 nitro-substituted five-membered heterocycles. Difference (1D NOE) spectra in combination with long-range gHMBC experiments were used as tools for the structural elucidation of nitro-substituted five-membered heterocycles. The assigned NMR data (chemical shifts and coupling constants) for all compounds were found to be in good agreement with theoretical calculations using the GIAO DFT method. The magnitudes of one-bond (1JCH) and long-range (nJCH, n>1) coupling constants were utilized for unambiguous differentiation between regioisomers of nitro-substituted five-membered heterocycles.  相似文献   

14.
The rate constants of the reactions of HOI molecules with H, OH, O ((3)P), and I ((2)P(3/2)) atoms have been estimated over the temperature range 300-2500 K using four different levels of theory. Geometry optimizations and vibrational frequency calculations are performed using MP2 methods combined with two basis sets (cc-pVTZ and 6-311G(d,p)). Single-point energy calculations are performed with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (pertubatively) electron excitations CCSD(T) using the cc-pVTZ, cc-pVQZ, 6-311+G(3df,2p), and 6-311++G(3df,3pd) basis sets. Reaction enthalpies at 0 K were calculated at the CCSD(T)/cc-pVnZ//MP2/cc-pVTZ (n = T and Q), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), and CCSD(T)/6-311++G(3df,3pd)//MP2/6-311G(d,p) levels of theory and compared to the experimental values taken from the literature. Canonical transition-state theory with an Eckart tunneling correction is used to predict the rate constants as a function of temperature. The computational procedure has been used to predict rate constants for H-abstraction elementary reactions because there are actually no literature data to which the calculated rate constants can be directly compared. The final objective is to implement kinetics of gaseous reactions in the ASTEC (accident source term evaluation code) program to improve speciation of fission products, which can be transported along the reactor coolant system (RCS) of a pressurized water reactor (PWR) in the case of a severe accident.  相似文献   

15.
The pseudopericyclic character of a group of cycloaddition reactions is theoretically investigated with the quantum theory of atoms in molecules of Bader at B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) levels of theory. The analysis of the topology of the Laplacian of the charge density, inverted Delta2rho(r), along the reaction coordinate sets out a clear cut between pericyclic and pseudopericyclic processes and also allows one to account for intermediate cases.  相似文献   

16.
The transition structures associated with the possible intramolecular tautomerization for acetaldehyde/vinyl alcohol and acetaldimine/vinylamine systems as models of keto/enol and imine/enamine interconversion processes, respectively, were characterized. The relative stabilities of the tautomers and the associated barrier heights were calculated. Ab initio analytical gradients and second derivatives at the HF level of theory and 3-21G, 6-31G, 6-31G**, 6-31++G**, and 6-311++G** basis-set, DFT (BP86/6-311++G** and BLYP/6-311++G**), and semiempirical (AM1 and PM3) procedures were used to identify the stationary points. Correlation effects were estimated using the perturbational approach at MP2/6-31G**, MP2/6-311++G**, and MP2/6-311++G (3df,2p) levels. The geometry, electronic structure, harmonic vibrational frequencies, and transition vector associated with the transition structures as well as the relative stabilities of different isomers and barrier heights were analyzed. The dependence of these properties upon theoretical methods is analyzed and discussed. The transition structures are four-membered rings and the corresponding transition vectors are associated to collective fluctuations. The 1,3 intramolecular hydrogen migration is much more advanced than are the hybridization changes on donor and acceptor centers at the transition structure. The corresponding barrier heights can be related to the change of bond orders and acid/base properties of these centers. A comparison of the results obtained with different methods renders that the nature of the transition structure seems to be a rather robust entity. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 66 : 9–24, 1998  相似文献   

17.
The electronic mechanism for the gas-phase concerted 1,3-dipolar cycloaddition of diazomethane (CH2N2) to ethene (C2H4) is described through spin-coupled (SC) calculations at a sequence of geometries along the intrinsic reaction coordinate obtained at the MP2/6-31G(d) level of theory. It is shown that the bonding rearrangements occurring during the course of this reaction follow a heterolytic pattern, characterized by the movement of three well-identifiable orbital pairs, which are initially responsible for the pi bond in ethene and the C-N pi bond and one of the N-N pi bonds in diazomethane and are retained throughout the entire reaction path from reactants to product. Taken together with our previous SC study of the electronic mechanism of the 1,3-dipolar cycloaddition of fulminic acid (HCNO) to ethyne (C2H2) (Theor. Chim. Acc. 1998, 100, 222), the results of the present work suggest strongly that most gas-phase concerted 1,3-dipolar cycloaddition reactions can be expected to follow a heterolytic mechanism of this type, which does not involve an aromatic transition state. The more conventional aspects of the gas-phase concerted 1,3-dipolar cycloaddition of diazomethane to ethene, including optimized transition structure geometry, electronic activation energy, activation barrier corrected for zero-point energies, standard enthalpy, entropy and Gibbs free energy of activation, have been calculated at the HF/6-31G(d), B3LYP/6-31G(d), MP2/6-31G(d), MP2/6-31G(d,p), QCISD/6-31G(d) and CCD/6-31G(d) levels of theory. We also report the CCD/6-311++G(2d, 2p)//CCD/6-31G(d), MP4(SDTQ)/6-311++G(2d,2p)//CCD/6-31G(d) and CCSD(T)/6-311++G(2d, 2p)//CCD/6-31G(d) electronic activation energies.  相似文献   

18.
At the dawn of the new millenium, new concepts are required for a more profound understanding of protein structures. Together with NMR and X-ray-based 3D-structure determinations in silico methods are now widely accepted. Homology-based modeling studies, molecular dynamics methods, and quantum mechanical approaches are more commonly used. Despite the steady and exponential increase in computational power, high level ab initio methods will not be in common use for studying the structure and dynamics of large peptides and proteins in the near future. We are presenting here a novel approach, in which low- and medium-level ab initio energy results are scaled, thus extrapolating to a higher level of information. This scaling is of special significance, because we observed previously on molecular properties such as energy, chemical shielding data, etc., determined at a higher theoretical level, do correlate better with experimental data, than those originating from lower theoretical treatments. The Ramachandran surface of an alanine dipeptide now determined at six different levels of theory [RHF and B3LYP 3-21G, 6-31+G(d) and 6-311++G(d,p)] serves as a suitable test. Minima, first-order critical points and partially optimized structures, determined at different levels of theory (SCF, DFT), were completed with high level energy calculations such as MP2, MP4D, and CCSD(T). For the first time three different CCSD(T) sets of energies were determined for all stable B3LYP/6-311++G(d,p) minima of an alanine dipeptide. From the simplest ab initio data (e.g., RHF/3-21G) to more complex results [CCSD(T)/6-311+G(d,p)//B3LYP/6-311++G(d,p)] all data sets were compared, analyzed in a comprehensive manner, and evaluated by means of statistics.  相似文献   

19.
Different possible pathways of the aminolysis reaction of succinic anhydride were investigated by applying high level electronic structure theory, examining the general base catalysis by amine and the general acid catalysis by acetic acid, and studying the effect of solvent. The density functional theory at the B3LYP/6-31G(d) and B3LYP/6-311++G(d,p) levels was employed to investigate the reaction pathways for the aminolysis reaction between succinic anhydride and methylamine. The single point ab initio calculations were based on the second-order M?ller-Plesset perturbation theory (MP2) with 6-31G(d) and 6-311++G(d,p) basis sets and CCSD(T)/6-31G(d) level calculations for geometries optimized at the B3LYP/6-311++G(d,p) level of theory. A detailed analysis of the atomic movements during the process of concerted aminolysis was further obtained by intrinsic reaction coordinate calculations. Solvent effects were assessed by the polarized continuum model method. The results show that the concerted mechanism of noncatalyzed aminolysis has distinctly lower activation energy compared with the addition/elimination stepwise mechanism. In the case of the process catalyzed by a second methylamine molecule, asynchronous proton transfer takes place, while the transition vectors of the acid-catalyzed transition states correspond to the simultaneous motion of protons. The most favorable pathway of the reaction was found through the bifunctional acid catalyzed stepwise mechanism that involves formation of eight-membered rings in the transition state structures. The difference between the activation barriers for the two mechanisms averages 2 kcal/mol at various levels of theory.  相似文献   

20.
H-bonding angle angleYHX has an important effect on the electronic properties of the H-bond Y...HX, such as intra- and intermolecular hyperconjugations and rehybridization, and topological properties of electron density. We studied the multifurcated bent H-bonds of the proton donors H3CZ (Z = F, Cl, Br), H2CO and H2CF2 with the proton acceptors Cl(-) and Br(-) at the four high levels of theory: MP2/6-311++G(d,p), MP2/6-311++G(2df,2p), MP2/6-311++G(3df,3pd) and QCISD/6-311++G(d,p), and found that they are all blue-shifted. These complexes have large interaction energies, 7-12 kcal mol(-1), and large blue shifts, delta r(HC) = -0.0025 --0.006 A and delta v(HC) = 30-90 cm(-1). The natural bond orbital analysis shows that the blue shifts of these H-bonds Y...HnCZ are mainly caused by three factors: rehybridization; indirect intermolecular hyperconjugation n(Y) -->sigma*(CZ), in that the electron density from n(Y) of the proton acceptor is transferred not to sigma*(CH), but to sigma*(CZ) of the donor; intramolecular hyperconjugation n(Z) -->sigma*(CH), in that the electron density in sigma*(CH) comes back to n(Z) of the donor such that the occupancy in sigma*(CH) decreases. The topological properties of the electron density of the bifurcated H-bonds Y...H2CZ are similar to those of the usual linear H-bonds, there is a bond critical point between Y and each hydrogen, and a ring critical point inside the tetragon YHCH. However, the topological properties of electron density of the trifurcated H-bonds Y...H3CZ are essentially different from those of linear H-bonds, in that the intermolecular bond critical point, which represents a closed-shell interaction, is not between Y and hydrogen, but between Y and carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号