首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-dimensional (2D) layered vanadium disulfide (VS_2) is a promising anode material for lithium ion batteries (LIBs) due to the high theoretical capacity.However,it remains a challenge to synthesize monodispersed ultrathin VS_2 nanosheets to realize the full potential.Herein,a novel solvothermal method has been developed to prepare the monodispersed bowl-shaped NH_3-inserted VS_2 nanosheets (VS_2).The formation of such a unique structure is caused by the blocked growth of (001) or (002) crystal planes in combination with a ripening process driven by the thermodynamics.The annealing treatment in Ar/H_2creates porous monodispersed VS_2(H-VS_2),which is subsequently integrated with graphene oxide to form porous monodispersed H-VS_2/rGO composite coupled with a reduction process.As an anode material for LIBs,H-VS_2/rGO delivers superior rate performance and longer cycle stability:a high average capacity of 868/525 mAh g~(-1) at a current density of 1/10 A g~(-1);a reversible capacity of 1177/889 mAh g~(-1) after 150/500 cycles at 0.2/1 A g~(-1).Such excellent electrochemical performance may be attributed to the increased active sites available for lithium storage,the alleviated volume variations and the shortened Li-ion diffusion induced from the porous structure with large specific surface area,as well as the protective effect from graphene nanosheets.  相似文献   

2.
Fe3O4 is considered as a promising electrode material for lithium-ion batteries(LIBs) due to its low cost and high theoretical capacity(928 mAh/g).Nevertheless,the huge volume expansion and poor conductivity seriously hamper its practical applications.In this study,we use a facile hydrothermal reaction together with a post heat treatment to construct the three-dimensional heterostructured composite(Fe3O4/rGO) inwhich reduced graphene oxide sheets wraped the Fe3O4 submicron cubes as the conductive network.The electric conduction and electrode kinetics of lithium ion insertion/extraction reaction of the composite is enhanced due to the assist of conductive rGO,and thus the Listorage performance is obviously improved.The composite exhibits a reversible charge capacity of772.1 mAh/g at the current density of 0.1 A/g,and the capacity retention reaches 70.3% after400 cycles at0.5 A/g,demonstrating obviously higher specific capacity and rate capability over the Fe3O4 submicron cubes without rGO,and much superior cycling stability to the parent Fe_2 O_3 submicron cubes without rGO.On the other hand,as a synergic conductive carbon support,the flexible rGO plays an important role in buffering the large volume change during the repeated discharge/charge cycling.  相似文献   

3.
以天然鳞片石墨为原料,采用改良的Hummers方法,制备了高纯度的薄层或单层氧化石墨(GO);并以抗坏血酸为还原剂,通过自组装还原的方式成功制备了具有三维多孔独巨石结构的还原氧化石墨烯(rGO)气凝胶,其形貌和结构经FT-IR, SEM, TEM, XRD和XPS表征。并对其作为锂离子电池负极材料的电化学性能进行了测试。结果表明:rGO气凝胶独特的形貌和结构提高了其比容量和循环性能,在100 mA·g-1电流密度下首周放电比容量可达1 700 mAh·g-1,首周充电比容量达710 mAh·g-1,经过100周循环后放电比容量仍可保持在450 mAh·g-1,库伦效率保持在98%。  相似文献   

4.
Conducting supporters of purified single-walled carbon nanotubes(SWNTs) and graphene oxide(GO)were used to confine pomegranate-structured Sn O2 nanospheres for forming SnO_2-GO-SWNT composites.As anode material for lithium ion batteries(LIBs), this composite exhibits a stable and large reversible capacity together with an excellent rate capability. In addition, an analysis of the AC impedance spectroscopy has been used to confirm the enhanced mechanism for LIB performance. The improved electrochemical performance should be ascribed greatly to the reinforced synergistic effects between GO and SWNT networks, and their enhanced contribution of the conductivity. These results indicate that this composite has potential for utilization in high-rate and durable LIBs.  相似文献   

5.
《中国化学快报》2022,33(8):3931-3935
Iron fluoride (FeF3) is considered as a promising cathode material for Li-ion batteries (LIBs) due to its high theoretical capacity (712 mAh/g) with a 3e? transfer. Herein, we have designed a strategy of hierarchical and mesoporous FeF3/rGO hybrids for LIBs, where the hollow FeF3 nanospheres are the main contributor to the specific capacity and the 2D rGO nanosheets are the matrix elevating the electronic conductivity and buffering the volume expansion. The unique FeF3/rGO hybrid can be rationally synthesized by a non-aqueous in-situ precipitation method, offering the merits of large specific surface area with rich active sites, fast transport channels for lithium ions, effective alleviation of volume expansion during cycles, and accelerating the electrochemical reaction kinetics. The FeF3/rGO hybrid electrode possesses a high initial discharge capacity of 553.9 mAh/g at a rate of 0.5 C with 378 mAh/g after 100 cycles, acceptable rate capability with 168 mAh/g at 2 C, and feasible high-temperature operation (320 mAh/g at 70 °C). The superior electrochemical behaviors presented here demonstrates that the FeF3/rGO hybrid is a potential electrode for LIBs, which may open up a new vision to design high-efficiency energy-storage devices such as LIBs based on transition metal fluorides.  相似文献   

6.
Sodium‐ion batteries (SIBs) are regarded as an attractive alternative to lithium‐ion batteries (LIBs) for large‐scale commercial applications, because of the abundant terrestrial reserves of sodium. Exporting suitable anode materials is the key to the development of SIBs and LIBs. In this contribution, we report on the fabrication of Bi@C microspheres using aerosol spray pyrolysis technique. When used as SIBs anode materials, the Bi@C microsphere delivered a high capacity of 123.5 mAh g?1 after 100 cycles at 100 mA g?1. The rate performance is also impressive (specific capacities of 299, 252, 192, 141, and 90 mAh g?1 are obtained under current densities of 0.1, 0.2, 0.5, 1, and 2 A g?1, respectively). Furthermore, the Bi@C microsphere also proved to be suitable LIB anode materials. The excellent electrochemical performance for both SIBs and LIBs can attributed to the Bi@C microsphere structure with Bi nanoparticles uniformly dispersed in carbon spheres.  相似文献   

7.
Organic small structure quinones go with ionic liquids electrolytes would exhibit ultrastable electrochemical properties.In this study,calix[6]quinone(C6Q) cathode was matched with ionic liquid electrolyte Li[TFSI]/[PY13][TFSI](bis(trifluoromethane)sulfonimide lithium salt/N-methyl-N-pro pylpyrrolidinium bis(trifluoromethanesulfonyl)amide) to assemble lithium-ion batteries(LIBs).The electrochemical performance of LIBs was systematically studied.The capacity retention rates of C6Q through 1000 cycles at current densities of 0.2 C and 0.5 C were 70% and 72%,respectively.At 5 C, the capacity was maintained at 190 mAh g-1 after 1000 cycles,and 155 mAh g-1 even after 10,000 cycles,comparable to inorganic materials.This work would give a big push to the practical process of organic electrode materials in energy storage.  相似文献   

8.
Wood-derived carbons have been demonstrated to have large specific capacities as the anode materials of lithium-ion batteries(LIBs). However, these carbons generally show low tap density and minor volumetric capacity because of high specific surface area and pore volume. Combination with metal oxide is one of the expected methods to alleviate the obstacles of wood-derived carbons. In this work, the composites of Mn O loaded wood-derived carbon fibers(CF@Mn O) were prepared via a simple and envir...  相似文献   

9.
Silicon-carbon nanocomposite materials are widely adopted in the anode of lithium-ion batteries (LIB). However, the lithium ion (Li+) transportation is hampered due to the significant accumulation of silicon nanoparticles (Si) and the change in their volume, which leads to decreased battery performance. In an attempt to optimize the electrode structure, we report on a self-assembly synthesis of silicon nanoparticles@nitrogen-doped reduced graphene oxide/carbon nanofiber (Si@N-doped rGO/CNF) composites as potential high-performance anodes for LIB through electrostatic attraction. A large number of vacancies or defects on the graphite plane are generated by N atoms, thus providing transmission channels for Li+ and improving the conductivity of the electrode. CNF can maintain the stability of the electrode structure and prevent Si from falling off the electrode. The three-dimensional composite structure of Si, N-doped rGO, and CNF can effectively buffer the volume changes of Si, form a stable solid electrolyte interface (SEI), and shorten the transmission distance of Li+ and the electrons, while also providing high conductivity and mechanical stability to the electrode. The Si@N-doped rGO/CNF electrode outperforms the Si@N-doped rGO and Si/rGO/CNF electrodes in cycle performance and rate capability, with a reversible specific capacity reaching 1276.8 mAh/g after 100 cycles and a Coulomb efficiency of 99%.  相似文献   

10.
Double carbon coated Fe P composite(Fe P@NC@r GO)was in situ fabricated via the phosphorization process of the as-prepared Prussian blue@graphene oxide(PB@GO)precursor.The Fe P nanocrystals were successfully embedded in the nitrogen-doped porous carbon matrix.When used as the anode for lithium ion batteries(LIBs),the Fe P@NC@r GO anode shows superior lithium storage properties,delivering a high specific capacity of 830 m A h g~(-1)after 100 cycles at 100 m A g~(-1)and excellent rate capability of 359 m A h g~(-1)at 5 A g~(-1).The outstanding performance mainly ascribes to the synergistic effect of the double carbon coating and porous structure design.The introduction of porous carbon and graphene coating on Fe P nanoparticles greatly enhance the electronic conductivity of the active material and well accommodates the large volume variation of Fe P during the cycling process.  相似文献   

11.
Utilizing cost-effective raw materials to prepare high-performance silicon-based anode materials for lithium-ion batteries (LIBs) is both challenging and attractive. Herein, a porous SiFe@C (pSiFe@C) composite derived from low-cost ferrosilicon is prepared via a scalable three-step procedure, including ball milling, partial etching, and carbon layer coating. The pSiFe@C material integrates the advantages of the mesoporous structure, the partially retained FeSi2 conductive phase, and a uniform carbon layer (12–16 nm), which can substantially alleviate the huge volume expansion effect in the repeated lithium-ion insertion/extraction processes, effectively stabilizing the solid–electrolyte interphase (SEI) film and markedly enhancing the overall electronic conductivity of the material. Benefiting from the rational structure, the obtained pSiFe@C hybrid material delivers a reversible capacity of 1162.1 mAh g−1 after 200 cycles at 500 mA g−1, with a higher initial coulombic efficiency of 82.30 %. In addition, it shows large discharge capacities of 803.1 and 600.0 mAh g−1 after 500 cycles at 2 and 4 A g−1, respectively, manifesting an excellent electrochemical lithium storage. This work provides a good prospect for the commercial production of silicon-based anode materials for LIBs with a high lithium-storage capacity.  相似文献   

12.
The conceptual design of yolk-shell structured Si/C composites is considered to be an effective way to improve the recyclability and conductivity of Si-based anode materials. Herein, a new type of yolk-shell structured Si/C composite(denoted as TSC-PDA-B) has been intelligently designed by rational engineering and precise control. In the novel structure, the multiple Si nanoparticles with small size are successfully encapsulated into the porous carbon shells with double layers benefiting from the strong etching effect of HF. The TSC-PDA-B product prepared is evaluated as anode materials for lithium-ion batteries(LIBs).The TSC-PDA-B product exhibits an excellent lithium storage performance with a high initial capacity of 2108 mAh g~(-1) at a current density of 100 mA g~(-1) and superior cycling performance of 1113 mAh g~(-1) over 200 cycles. The enhancement of lithium storage performance may be attributed to the construction of hybrid structure including small Si nanoparticles, high surface area, and double carbon shells, which can not only increase electrical conductivity and intimate electrical contact with Si nanoparticles, but also provide built-in buffer voids for Si nanoparticles to expand freely without damaging the carbon layer.The present findings can provide some scientific insights into the design and the application of advanced Si-based anode materials in energy storage fields.  相似文献   

13.
Transition-metal oxides are considered to be a promising anode material for lithium-ion batteries(LIBs)due to their high capacities,low cost,and ease of synthesis.Herein,a hybrid nanosheet composed of uniform MoO_2 nanoparticles(NPs) homogeneously immobilized on the reduced graphene oxide nanosheets(MoO_2 NP@rGO) is first synthesized by a self-templating and subsequent calcination treatment.The unique two-dimensional hybridnanosheets provides several merits.rGO can be used as a favorable support for the loading of electrochemically active MoO_2 NPs.Meanwhile,MoO_2 NPs can effectively prevent the stacking of the rGO.The effective combination of MoO_2 NPs and rGO nanosheets furnish additional electrochemically interfacial active sites for extra lithium ion sto rage.Noticeably,the as-fabricated hybrid nanosheets deliver a reversible capacity of 641 mAh/g after 350 cycles at a current density of 1000 mA/g with a good rate capability.The greatly enhanced lithium storage properties of MoO_2 NP@rGO indicate the importance of elaborate construction of novel hybrid hierarchical structures.  相似文献   

14.
Recently,the development of new electrode materials for lithium-ion batteries(LIBs)has received intensive attention.As an important family of inorganic materials,mixed Mo-based transition metal oxides system is focused as anode materials.In the present work,a simple route has been adopted for the synthesis of layered-flake-likeβ-SnMo04 Nano-assemblies,which have been explored as potential anode materials for the first time in lithium-ion battery(LIB).Overall,the current reports on metal molybdate as anode materials are still rarely.As the anode material for LIBs,it was observed that the fabricated anode is capable of delivering a steady state capacity of almost 400 mAh/g up to 300 cycles under the influence of200 mA/g current density.Further,the anode material is suitable for use as a rated capacity anode because of its high current density tolerance.The present study can be further extended for the generation of a wide variety of other novel materials for multidisciplinary energy related applications.  相似文献   

15.
The synthesized lotus-stalk Bi4Ge3O12 utilized as binder-free anode for LIBs demonstrates excellent cycling performance. The synthesized lotus-stalk Bi4Ge3O12 is composed of nanosheets, which is contribute to outstanding lithium storage performance.  相似文献   

16.
Developing high-performance anodes for potassium ion batteries(KIBs) is of paramount significance but remains challenging.In the normal sense,electrode materials are prepared by ubiquitous wet chemical routes,which otherwise might not be versatile enough to create desired heterostructures and/or form clean interfacial areas for fast transport of K-ions and electrons.Along this line,rate capability/cycling stability of resulting KIBs are greatly handicapped.Herein we present an all-chemical vapor deposition approach to harness the direct synthesis of nitrogen-doped graphene(NG)/rhenium diselenide(ReSe_2)hybrids over three-dimensional MXene supports as superior heterostructure anode material for KIBs.In such an innovative design,1 T'-ReSe2 nanoparticles are sandwiched in between the NG coatings and MXene frameworks via strong interfacial interactions,thereby affording facile K~+ diffusion,enhancing overall conductivity,boosting high-power performance and reinforcing structural stability of electrodes.Thus-constructed anode delivers an excellent rate performance of 138 mAh g-1 at 10.0 A g-1 and a high reversible capacity of 90 mAh g-1 at 5 A g-1 after 300 cycles.Furthermore,the potassium storage mechanism has been systematically probed by advanced in situlex situ characterization techniques in combination with first principles computations.  相似文献   

17.
Organic carbonyl electrode materials are widely employed for alkali metal-ion secondary batteries in terms of their sustainability, structure designability and abundant resources. As a typical redox-active organic electrode materials, pyrene-4, 5, 9, 10-tetraone (PT) shows high theoretical capacity due to the rich carbonyl active sites. But its electrochemical behavior in secondary batteries still needs further exploration. Herein, PT-based linear polymers (PPTS) is synthesized with thioether bond as bridging group and then employed as an anode material for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). As expected, PPTS shows improved conductivity and insolubility in the non-aqueous electrolyte. When used as an anode material for LIBs, PPTS delivers a high reversible specific capacity of 697.1 mAh g−1 at 0.1 A g−1 and good rate performance (335.4 mAh g−1 at 1 A g−1). Moreover, a reversible specific capacity of 205.2 mAh g−1 at 0.05 A g−1 could be obtained as an anode material for SIBs.  相似文献   

18.
采用两步加热高温固相法合成了掺杂Nd3+的LiFe1-xNdxPO4/C复合材料(x=0,0.01,0.02,0.04,0.06,0.08).用TG-DSC对前驱体进行分析和SQUID(超导量子干涉仪)对样品中Fe3+的磁性测定,优化了合成工艺条件;采用XRD、FE-SEM、EDS等方法分析了样品的结构并对其电化学性能进行了测试.结果表明:LiFe1-xNdxPO4/C复合材料具有橄榄石型结构;当Nd3+的掺杂量6%(物质的量分数)、煅烧温度700℃、煅烧时间16h时,样品在0.2C(1C=170.0mA·g-1)电流密度下的最大放电比容量可达165.2mAh·g-1,循环100次后的容量保持率仍为92.8%,在1C、2C、5C下的最大放电比容量分别为146.8、125.7和114.8 mAh·g-1.通过测定样品在不同较低倍率下的放电比容量,采用外推法得出制备样品的实测理论比容量为168.7 mAh·g-1.  相似文献   

19.
《中国化学快报》2023,34(7):108054
Heteroatom-doped porous carbon materials are very attractive for lithium ion batteries (LIBs) owing to their high specific surface areas, open pore structures, and abundant active sites. However, heteroatom-doped porous carbon with very high surface area and large pore volume are highly desirable but still remain a big challenge. Herein, we reported a sulfur-doped mesoporous carbon (CMK-5-S) with nanotubes array structure, ultrahigh specific surface area (1390 m2/g), large pore volume (1.8 cm3/g), bimodal pore size distribution (2.9 and 4.6 nm), and high sulfur content (2.5 at%). The CMK-5-S used as an anode material for LIBs displays high specific capacity, excellent rate capability and highly cycling stability. The initial reversible specific capacity at 0.1 A/g is as high as 1580 mAh/g and simultaneously up to 701 mAh/g at 1 A/g even after 500 cycles. Further analysis reveals that the excellent electrochemical storage performances is attributed to its unique structures as well as the expanded lattice by sulfur-doping.  相似文献   

20.
We report a convenient, low-cost and ecofriendly approach for the fabrication of a Co3O4/CoOOH electrode material intended for lithium ion batteries (LIBs) and supercapacitors (SCs) using the electrochemical dispersion of the cobalt foil through the pulse alternating current (PAC) method. The synthesized material is a Co3O4/CoOOH composite (with about 10–15 wt% CoOOH) in the form of nanosheets with a length of approximately 200 nm and a thickness of 10–20 nm. It is found to exhibit high reversible discharge specific capacities and good cycling behavior while tested as the anode material in LIBs. Measuring the reversible capacitance at high (2C) and low (C/20) cycling rates gives the values of 610 mAh g−1 and 1030 mAh g−1, respectively. The specimen possesses excellent performance as the electrode for SCs with the retention of capacitance up to 98% at the current density increasing from 0.5 to 10 A g−1. After 1000 cycles at a current density of 10 A g−1 the electrode maintains about 90% of its initial capacitance which evidences the long cycle life. Hence, electrochemically prepared Co3O4/CoOOH seems to be a promising candidate for high-performance LIBs and SCs applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号