首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this communication we demonstrated the incorporation of water-soluble surface-active protein OVA within an insoluble cationic ODA monolayer and compared with zwitterionic (DPPC) and anionic (SA) monolayer. The incorporation of OVA is found to be more in ODA as compared to that of DPPC and SA. The kinetics of protein adsorption in lipid monolayer gives the idea that unfolding of OVA is less in case of DPPC than SA and ODA. The pi-A isotherm and compressibility study gives the information about the different states of the protein-lipid mixed monolayer. At higher pressure, OVA tend to squeeze out from the lipids monolayer. High-resolution field emission scanning electron microscope (FE-SEM) images confirm this observation. The surface morphology of DPPC-OVA LB film is far better than ODA-OVA and SA-OVA LB film. OVA forms large irregular aggregates on SA and ODA monolayer. Fluorescence study reveals that protein structure is perturbed more in SA and ODA system compared to that of DPPC. The overall results indicate that DPPC monolayer is better to get protein lipid mixed film than SA and ODA monolayer.  相似文献   

2.
In this communication, the surface activity of the ovalbumin (OVA) at the air/water interface was studied to establish the nature of the interaction with the stearic acid (SA) monolayer, based on Langmuir–Blodgett (LB) technique. The interaction was monitored by studying the time (t) variation of surface pressure (π) at constant area (A). The growth of π with time indicates a positive association between the SA and the OVA molecules. The surface compressibility analysis has been performed to specify the phase transition of OVA–SA mixed monolayer. Incorporation/association of OVA within the SA monolayer led to noteworthy changes in surface compressibility and was surface pressure as well as protein concentration dependent. Both the hydrophobic and the Vander wall type interactions are found to be responsible for the association. The quenching of tyrosine band in tryptophan excitation spectrum is observed in steady-state fluorescence spectroscopy. This suggests that the tyrosine is the probable binding site with SA. Due to incorporation of SA, the energy transfer from tyrosine to tryptophan is hindered. At higher pressure, OVA tend to squeeze out from the SA monolayer. The high-resolution field emission scanning electron microscope (FE-SEM) image confirms this observation. Aggregated protein structure observed at high pressure indicates unfolding of protein.  相似文献   

3.
The objective of this work is to establish under which conditions short RNA molecules (similar to miRNA) associate with zwitterionic phospholipids and how this differs from the association with cationic surfactants. We study how the base pairing (i.e., single stranded versus double stranded nucleic acids) and the length of the nucleic acid and the charge of the lipid/surfactant monolayer affect the association behavior. For this purpose, we study the adsorption of nucleic acids to monolayers composed of dipalmitoyl phosphatidylcholine (DPPC) or dioctadecyl-dimethyl-ammoniumbromide (DODAB) using the surface film balance, neutron reflectometry, and fluorescence microscopy. The monolayer studies with the surface film balance suggested that short single-stranded ssRNA associates with liquid expanded zwitterionic phospholipid monolayers, whereas less or no association is detected for double-stranded dsRNA and dsDNA. In order to quantify the interaction and to determine the location of the nucleic acid in the lipid/surfactant monolayer we performed neutron reflectometry measurements. It was shown that ssRNA adsorbs to and penetrates the liquid expanded monolayers, whereas there is no penetration of nucleic acids into the liquid condensed monolayer. No adsorption was detected for dsDNA to zwitterionic monolayers. On the basis of these results, we propose that the association is driven by the hydrophobic interactions between the exposed hydrophobic bases of the ssRNA and the hydrocarbon chains of the phospholipids. The addition of ssRNA also influences domain formation in the DPPC monolayer, leading to fractal-like interconnected domains. The experimental results are discussed in terms of the implication for biological processes and new leads for applications in medicine and biotechnology.  相似文献   

4.
We present the results of a fluorescence microscopy study of the interaction of annexin A1 with dipalmitoylphosphatidylcholine (DPPC) monolayers as a function of the lipid monolayer phase and the pH of the aqueous subphase. We show that annexin A1-DPPC interaction depends strongly on the domain structure of the DPPC monolayer and only weakly on the subphase pH. Annexin A1 is found to be line active, with preferential adsorption at phase boundaries. Also, annexin A1 is found to form networks in the presence of a domain structure in the monolayer. Our results point toward an important contribution of the unique N-terminal domain to the organization of the protein at the interface.  相似文献   

5.
Molecular interactions between mycobacterial cell wall lipid, cord factor (CF) and the abundant surfactant lipid, dipalmitoylphosphatidylcholine (DPPC) were investigated using Langmuir monolayers at physiological temperatures (37 degrees C). Surface topography of the films was visualized by atomic force microscopy (AFM). Thermodynamic behavior of the mixed monolayers was evaluated by investigating the molecular area excess, excess Gibbs free energy of mixing and maximum compressibility modulus (SCM(max)). Cord factor formed immiscible and thermodynamically unstable monolayers with DPPC. Monolayer presence of cord factor altered the physical state of DPPC monolayers from liquid condensed to liquid expanded with the lowering of SCM(max) from 160 to 40 mN/m, respectively. AFM imaging exhibited smooth homogenous surface topography of DPPC films which in the presence of cord factor was markedly altered with the appearance of aggregates and increased surface roughness. The results highlight the capacity of cord factor to disturb DPPC monolayer organization and structure. Interfacial presence of cord factor results in DPPC monolayer fluidization. Lung surfactant function is attributed to its ability to form well packed low compressibility films. Such molecular interactions suggest a dysfunction of lung surfactant in pulmonary tuberculosis due to surfactant monolayer fluidization.  相似文献   

6.
Cholesterol is a main component of the cell membrane and could have significant effects on drug-cell membrane interactions and thus the therapeutic efficacy of the drug. It also plays an important role in liposomal formulation of drugs for controlled and targeted delivery. In this research, Langmuir film technique, atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) are employed for a systematic investigation on the effects of cholesterol component on the molecular interactions between a prototype antineoplastic drug (paclitaxel) and 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) within the cell membrane by using the lipid monolayer at the air-water interface as a model of the lipid bilayer membrane and the biological cell membrane. Analysis of the measured surface pressure (pi) versus molecular area (a) isotherms of the mixed DPPC/paclitaxel/cholesterol monolayers at various molar ratios shows that DPPC, paclitaxel and cholesterol can form a non-ideal miscible system at the air-water interface. Cholesterol enhances the intermolecular forces between paclitaxel and DPPC, produces an area-condensing effect and thus makes the mixed monolayer more stable. Investigation of paclitaxel penetration into the mixed DPPC/cholesterol monolayer shows that the existence of cholesterol in the DPPC monolayer can considerably restrict the drug penetration into the monolayer, which may have clinical significance for diseases of high cholesterol. FTIR and AFM investigation on the mixed monolayer deposited on solid surface confirmed the obtained results.  相似文献   

7.
The monolayer collapse behavior of n‐hexadecanol/dipalmitoyl phosphatidylcholine (DPPC) was investigated in this study at the air/water interface at 37 °C. Surface pressure variations with time for the mixed monolayers of DPPC with 20 mol% and 50 mol% n‐hexadecanol at corresponding collapse points were recorded by a Langmuir trough system. In addition, the interaction of n‐hexadecanol with a pure DPPC monolayer was identified by fluorescence microscopy (FM). The results demonstrated distinct differences between these systems; according to our observation, the higher the ratio of n‐hexadecanol to DPPC, the more nucleation domains can be induced. The FM images demonstrated that pronounced domain formation was associated with a longer relaxation time of the collapsed DPPC and DPPC/n‐hexadecanol monolayers, and the presence of n‐hexadecanol appeared to enhance the relaxation processes. The liposome was prepared by the thin‐film hydration method. The average diameter of DPPC and DPPC/n‐hexadecanol liposomes was investigated by dynamic light scattering. It is shown that the diameter of DPPC liposome with n‐hexadecanol is smaller than pure DPPC liposome at the initial state. After 24 hours, DPPC/n‐hexadecanol liposome became larger than pure DPPC liposome and lasted for the next four days. The effects of a greater ratio of n‐hexadecanol did not play an important role in DPPC liposome formation based on our dynamic light scattering analysis. Our result demonstrated that n‐hexadecanol might affect the DPPC liposome stability. The increased ratio of n‐hexadecanol in DPPC liposomes could only a play a minor role in DPPC liposome fusion.  相似文献   

8.
Vibrational sum frequency generation spectroscopy is used to study the interactions of the charged soluble organic surfactant sodium dodecyl sulfate (SDS) with an insoluble 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer at the air-aqueous interface. Results indicate that the surfactant species compete for surface sites in the mixed system, with a lower monolayer number density of DPPC molecules being observed in the presence of dodecyl sulfate anions at the interface. Spectroscopic results also indicate that fewer dodecyl sulfate chains reside at the interface when the insoluble DPPC film is present. Increased conformational ordering of the acyl chains of both the DPPC molecules and the interfacial dodecyl sulfate anions is observed in the mixed system. Additionally, charged surfactant SDS promotes the alignment of the interfacial water molecules even in the presence of a DPPC monolayer.  相似文献   

9.
Adsorption of bovine serum albumin at solid/aqueous interfaces   总被引:3,自引:0,他引:3  
Adsorption of soluble serum proteins on hydrophilic and hydrophobic solid surfaces is important for biomaterials and chromatographic separations of proteins. The adsorption of bovine serum albumin (BSA) from aqueous solutions was studied with in situ ATR-IR spectroscopy, and with ex situ ATR-IR, ellipsometry, and water wettablity measurements. The results were used to quantitatively determine the adsorbed film thickness and surface density of BSA on hydrophilic silicon oxide/silicon surfaces, and on these surfaces covered with a hydrophobic lipid monolayer of dipalmitoylphosphatidylcholine (DPPC). The water contact angles were 5° for silicon oxide, 47° ± 1° for the DDPC monolayer, and 53° ± 1° for the BSA monolayers. At 25 °C, and with 0.01–1 wt% BSA in water, the surface densities range from Γ = 2.6–5.0 mg/m2, and the film thicknesses range from d = 2.0–3.8 nm, on the assumption that the film is as dense as bulk protein. These results, and certain changes in the IR amide I and II bands of the protein, indicate that the protein adsorbs as a side-on monolayer, with some flattening due to unfolding or denaturation. The estimated -helical content for protein in buffer solutions is 15% higher than for solutions in water. The adsorption density reaches a steady-state value within 10 min for the lowest concentration, but does not appear to reach a steady-state value after 3 h f‘or the higher concentrations. Adsorption of BSA on a silicon oxide surface covered with a monolayer of DPPC leads to an adsorbed protein film of about half the thickness and surface density than on silicon oxide, but the same contact angle, indicating more protein unfolding on the hydrophobic than on the hydrophilic surface.  相似文献   

10.
Although the influence of structurally modified sterols on artificial membranes has been intensively investigated, studies on the properties of stanols, which are saturated analogs of sterols, are very rare. Therefore, we have performed Grazing Incidence X-ray Diffraction (GIXD) experiments aimed at studying in-plane organization of a plant stanol-β-sitostanol monolayer and its mixtures with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine - DPPC at the air/water interface. The collected GIXD data, resulting in-plane parameters and BAM images provide information on molecular organization and in-plane ordering of the investigated films. It was found that the lateral organization of β-sitostanol/DPPC monolayers depends on their composition. The oblique structure of the in-plane lattice of tilted hydrophobic region of molecules, found for DPPC film, is maintained at 10 mol% of stanol in the system. However, at 30 and 90 mol% of stanol in the mixture, the arrangement of molecules is hexagonal and they are oriented perpendicularly to the interface. With the addition of stanol the extend of the in-plane order of the monolayers decreases. Moreover, in mixtures the ordered domains consist of both monolayer's components. Additionally, β-sitostanol film is of similar in-plane organization as the corresponding sterol monolayer (β-sitosterol) and stanol induces condensing effect on DPPC.  相似文献   

11.
In this work, surface film balance and Brewster angle microscopy techniques have been used to analyze the structural characteristics (structure, topography, reflectivity, thickness, miscibility, and interactions) of hydrolysates from sunflower protein isolate (SPI) and dipalmitoylphosphatidylcholine (DPPC) mixed monolayers spread on the air-water interface. The degree of hydrolysis (DH) of SPI, low (5.62%), medium (23.5%), and high (46.3%), and the protein/DPPC mass fraction were analyzed as variables. The structural characteristics of the mixed monolayers deduced from the surface pressure (pi)-area (A) isotherms depend on the interfacial composition and degree of hydrolysis. At surface pressures lower than the equilibrium surface pressure of SPI hydrolysate (pi(e)(SPI hydrolysate)), both DPPC and protein are present in the mixed monolayer. At higher surface pressures (at pi > pi(e)(SPI hydrolysate)), collapsed protein residues may be displaced from the interface by DPPC molecules. The differences observed between pure SPI hydrolysates and DPPC in reflectivity (I) and monolayer thickness during monolayer compression have been used to analyze the topographical characteristics of SPI hydrolysates and DPPC mixed monolayers at the air-water interface. The topography, reflectivity, and thickness of mixed monolayers confirm at microscopic and nanoscopic levels the structural characteristics deduced from the pi-A isotherms.  相似文献   

12.
Molecular interactions between paclitaxel, an anticancer drug, and phospholipids of various chain unsaturations and headgroup types were investigated in the present study by Langmuir film balance and differential scanning calorimetry. Both the lipid monolayer at the air-water interface and the lipid bilayer vesicles (liposomes) were employed as model cell membranes. It was found that, regardless of the difference in molecular structure of the lipid chains and headgroup, the drug can form nonideal, miscible systems with the lipids at the air-water interface over a wide range of paclitaxel mole fractions. The interaction between paclitaxel and phospholipid within the monolayer was dependent on the molecular area of the lipids at the interface and can be explained by intermolecular forces or geometric accommodation. Paclitaxel is more likely to form thermodynamically stable systems with 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) and 1,2-dielaidoyl-sn-glycero-3-phosphocholine (DEPC) than with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). Investigation of the drug penetration into the lipid monolayer showed that DPPC and DEPC have higher incorporation abilities for the drug than DPPE and DSPC. A similar trend was also evidenced by DSC investigation with liposomes. While little change of DSC profiles was observed for the DPPE/paclitaxel and DSPC/paclitaxel liposomes, paclitaxel caused noticeable changes in the thermographs of DPPC and DEPC liposomes. Paclitaxel was found to cause broadening of the main phase transition without significant change in the peak melting temperature of the DPPC bilayers, which demonstrates that paclitaxel was localized in the outer hydrophobic cooperative zone of the bilayer, i.e., in the region of the C1-C8 carbon atoms of the acyl chain or binding at the polar headgroup site of the lipids. However, it may penetrate into the deeper hydrophobic zone of the DEPC bilayers. These findings provide useful information for liposomal formulation of anticancer drugs as well as for understanding drug-cell membrane interactions.  相似文献   

13.
Pulmonary lung surfactant is a mixture of surfactants that reduces surface tension during respiration. Perfluorinated surfactants have potential applications for artificial lung surfactant formulations, but the interactions that exist between these compounds and phospholipids in surfactant monolayer mixtures are poorly understood. We report here, for the first time, a detailed thermodynamic and structural characterization of a minimal pulmonary lung surfactant model system that is based on a ternary phospholipid-perfluorocarbon mixture. Langmuir and Langmuir-Blodgett monolayers of binary and ternary mixtures of the surfactants 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) and perfluorooctadecanoic acid (C18F) have been studied in terms of miscibility, elasticity and film structure. The extent of surfactant miscibility and elasticity has been evaluated via Gibbs excess free energies of mixing and isothermal compressibilities. Film structure has been studied by a combination of atomic force microscopy and fluorescence microscopy. Combined thermodynamic and microscopy data indicate that the ternary monolayer films were fully miscible, with the mixed films being more stable than their pure individual components alone, and that film compressibility is minimally improved by the addition of perfluorocarbons to the phospholipids. The importance of these results is discussed in context of these mixtures' potential applications in pulmonary lung surfactant formulations.  相似文献   

14.
The interfacial behavior of the newly designed Fluorocarbon Hydrocarbon Cationic Lipid (FHCL or CH(3)(CH(2))(17)N(+)(C(2)H(5))(2)(CH(2))(3)(CF(2))(7)CF(3)I(-)) and its mixtures with a phospholipid (DPPC, Dipalmitoylphosphatidylcholine) at different mole fractions were investigated. This new molecule was synthesized to mimic the selected properties of lung surfactant, which is a natural lipid-protein mixture which is known to play important roles in the process of respiration, by considering the structure/function relation of lung surfactant protein (SP-C). Each segment in the molecular structure was selected to affect the molecular level interaction at the interface whereas the keeping the overall structure as simple as possible. The surface pressure area isotherms obtained for the mixtures of DPPC/FHCL indicated that there was repulsive interaction between DPPC and FHCL molecules. Due to the molecular level interaction, specifically at mole fraction 0.3, the isotherm obtained from that mixture resembled the isotherm obtained from the DPPC monolayer in the presence of SP-C. High elasticity of the interface was one of the important parameters for the respiration process, therefore, shear and dilatational elasticities of two-component systems were determined and they were found to be similar to the case where SP-C protein is present. Fluorescence microscopy images were taken in order to investigate the monolayer in details. The FHCL was able to fluidize the DPPC monolayer even at high surface pressures effectively. In addition, the cyclic compression-expansion isotherms were obtained to understand the spreading and re-spreading ability of the pure FHCL and the mixed DPPC/FHCL monolayers. At a specific mole fraction, X(FHCL)=0.3, the mixture exhibited good hysteresis in area, compressibility, recruitment index and re-spreading ability at the interface. All these results point out that FHCL can fulfill the selected features of the lung surfactant that are attributed to the presence of SP-C protein when mixed with DPPC, even if the molecular structure of the FHCL is quite simple.  相似文献   

15.
The surface pressure (π)– and the surface potential (ΔV)–area (A) isotherms were obtained for two-component monolayers of four different perfluorocarboxylic acids (FCns; perfluorododecanoic acid: FC12, perfluorotetradecanoic acid: FC14, perfluorohexadecanoic acid: FC16, perfluorooctadecanoic acid: FC18) with dipalmitoylphosphatidylcholine (DPPC) on substrate solution of 0.15 M NaCl (pH 2.0) at 298.2 K as a function of compositions in the mixtures by employing the Wilhelmy method, the ionizing electrode method, the fluorescence microscopy, and the atomic force microscopy. The data for the two-component monolayers on these systems were analyzed in terms of the additivity rule. Assuming a regular surface mixture, the Joos equation which allows one to describe the collapse pressure of a two-component monolayer with miscible components was used to declare the miscibility of the monolayer state, and an interaction parameter and an interaction energy were calculated. The new finding was that FCns and DPPC are miscible or immiscible depending on chain length increment of fluorocarbon part. That is, FC12/DPPC monolayer was perfectly miscible, and FC14/DPPC, and FC16/DPPC (0 ≤ XFC16 ≤ 0.3) monolayers were partially miscible. While FC16/DPPC (0.3 < XFC16 < 1) and FC18/DPPC systems are immiscible in the monolayer state. Furthermore, the mean molecular area, the surface dipole moment, and the phase diagrams enabled us to estimate the molecular orientation of four different perfluorocarboxylic acids/DPPC in the two-component monolayer state. One type of phase diagrams was obtained and classified into the positive azeotropic type. The miscibility of FCns and DPPC in the monolayer was also supported by fluorescence microscopy and atomic force microscopy. FC12/DPPC, FC14/DPPC and FC16/DPPC (0 ≤ XFC16 ≤ 0.3) two-component monolayers on 0.15 M NaCl (pH 2) showed that FC12, FC14 and FC16 (0 ≤ XFC16 ≤ 0.3) can dissolve or partially dissolve the ordered solid DPPC domains formed upon compression. This indicates that these fluorinated amphiphiles soften or harden the lipid depending on their chain length.  相似文献   

16.
磷脂酰胆碱LB单分子膜诱导下KDP晶体取向生长的研究   总被引:3,自引:0,他引:3  
有机超薄膜诱导晶体生长是在化学、物理与生物多门学科相互交融的基础上发展起来的新兴学科 ,并逐渐成为仿生合成的重要分支 [1] .目前的研究重点主要集中于以有机化合物 LB膜作为模板剂诱导生物矿化材料上 [2~ 5] .磷脂 LB膜是生物膜的简化模型体系 [6 ] ,用它作模板剂将使该领域的研究进一步接近生物体系 .对晶体而言 ,修饰晶体材料的特征对于改善和测定材料的光学性能至关重要 [2 ] ,但目前有关上述领域的研究几乎均是空白 .KH2 PO4 ( KDP)晶体是性能优良的非线性光学材料 [7] ,本文首次以磷脂分子 LB膜作为模板剂诱导 KDP的晶化…  相似文献   

17.
Structural characteristics (structure, elasticity, topography, and film thickness) of dipalmitoyl phosphatidylcholine (DPPC) and dioleoyl phosphatidylcholine (DOPC) monolayers were determined at the air-water interface at 20 degrees C and pH values of 5, 7, and 9 by means of surface pressure (pi)-area (A) isotherms combined with Brewster angle microscopy (BAM) and atomic force microscopy (AFM). From the pi-A isotherms and the monolayer elasticity, we deduced that, during compression, DPPC monolayers present a structural polymorphism at the air-water interface, with the homogeneous liquid-expanded (LE) structure; the liquid-condensed structure (LC) showing film anisotropy and DPPC domains with heterogeneous structures; and, finally, a homogeneous structure when the close-packed film molecules were in the solid (S) structure at higher surface pressures. However, DOPC monolayers had a liquid-expanded (LE) structure under all experimental conditions, a consequence of weak molecular interactions because of the double bond of the hydrocarbon chain. DPPC and DOPC monolayer structures are practically the same at pH values of 5 and 7, but a more expanded structure in the monolayer with a lower elasticity was observed at pH 9. BAM and AFM images corroborate, at the microscopic and nanoscopic levels, respectively, the same structural polymorphism deduced from the pi-A isotherm for DPPC and the homogeneous structure for DOPC monolayers as a function of surface pressure and the aqueous-phase pH. The results also corroborate that the structural characteristics and topography of phospholipids (DPPC and DOPC) are highly dependent on the presence of a double bond in the hydrocarbon chain.  相似文献   

18.
Atomic force microscopy (AFM) combined with surface pressure-area isotherms were used to probe the interfacial behavior of phospholipid monolayers following penetration of surfactin, a cyclic lipopeptide produced by Bacillus subtilis strains. Prior to penetration experiments, interfacial behavior of different surfactin molecules (cyclic surfactins with three different aliphatic chain lengths--S13, S14, and S15--and a linear surfactin obtained by chemical cleavage of the cycle of the surfactin S15) has been investigated. A more hydrophobic aliphatic chain induces greater surface-active properties of the lipopeptide. The opening of the peptide ring reduces the surface activity. The effect of phospholipid acyl chain length (dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine- (DPPC), and distearoylphosphatidylcholine) and phospholipid polar head (DPPC, dipalmitoylphosphatidylethanolamine and dipalmitoylphosphatidylserine) on monolayer penetration properties of the surfactin S15 has been explored. Results showed that while the lipid monolayer thickness and the presence of electrostatic repulsions from the interfacial film do not significantly influence surfactin insertion, these parameters strongly modulate the ability of the surfactin to alter the nanoscale organization of the lipid films. We also probed the effect of surfactin structure (influence of the aliphatic chain length and of the cyclic structure of the peptide ring) on the behavior of DPPC monolayers. AFM images and isotherms showed that surfactin penetration is promoted by longer lipopeptide chain length and a cyclic polar head. This indicates that hydrophobic interactions are of main importance for the penetration power of surfactin molecules.  相似文献   

19.
Interactions between amphiphilic block copolymers and lipids are of medical interest for applications such as drug delivery and the restoration of damaged cell membranes. A series of monodisperse poly(ethylene oxide)-poly(butylene oxide) (EOBO) block copolymers were obtained with two ratios of hydrophilic/hydrophobic block lengths. We have explored the surface activity of EOBO at a clean interface and under 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers as a simple cell membrane model. At the same subphase concentration, EOBO achieved higher equilibrium surface pressures under DPPC compared to a bare interface, and the surface activity was improved with longer poly(butylene oxide) blocks. Further investigation of the DPPC/EOBO monolayers showed that combined films exhibited similar surface rheology compared to pure DPPC at the same surface pressures. DPPC/EOBO phase separation was observed in fluorescently doped monolayers, and within the liquid-expanded liquid-condensed coexistence region for DPPC, EOBO did not drastically alter the liquid-condensed domain shapes. Grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity (XRR) quantitatively confirmed that the lattice spacings and tilt of DPPC in lipid-rich regions of the monolayer were nearly equivalent to those of a pure DPPC monolayer at the same surface pressures.  相似文献   

20.
Dipalmitoyl phosphatidylcholine (DPPC), one of the main constituents of lung surfactant is mainly responsible for reduction of surface tension to near 0 mN/m during expiration, resisting alveolar collapse. Other unsaturated phospholipids like palmitoyloleoyl phosphatidylglycerol (PG), palmitoyloleoyl phosphatidylcholine (POPC) and neutral lipids help in adsorption of lung surfactant to the air-aqueous interface. Lung surfactant lipids may interact with plasma proteins and hematological agents flooding the alveoli in diseased states. In this study, we evaluated the effects of albumin and erythrocyte membranes on spread films of DPPC alone and mixtures of DPPC with each of PG, POPC, palmitoyloleoyl phosphatidylethanolamine (PE), cholesterol (CHOL) and palmitic acid (PA) in 9:1 molar ratios. Surface tension-area isotherms were recorded using a Langmuir-Blodgett (LB) trough at 37 degrees C with 0.9% saline as the sub-phase. In the presence of erythrocyte membranes, DPPC and DPPC+PA monolayers reached minimum surface tensions of 7.3+/-0.9 and 9.6+/-1.4 mN/m, respectively. Other lipid combinations reached significantly higher minimum surface tensions >18 mN/m in presence of membranes (Newman Keul's test, p<0.05). The relative susceptibility to membrane inhibition was [(DPPC+PG, 7:3)=(DPPC+PG, 9:1)=(DPPC+POPC)=(DPPC+PE)=(DPPC+CHOL)]>[(DPPC+PA)=(DPPC)]. The differential response was more pronounced in case of albumin with DPPC and DPPC+PA monolayers reaching minimum surface tensions less than 2.4 mN/m in presence of albumin, whereas DPPC+PG and DPPC+POPC reached minimum surface tensions of around 20 mN/m in presence of albumin. Descending order of susceptibility of the spread monolayers of lipid mixtures to albumin destabilization was as follows: [(DPPC+PG, 7:3)=(DPPC+PG, 9:1)=(DPPC+POPC)]>[(DPPC+PE)=(DPPC+CHOL)]>[(DPPC+PA)=(DPPC)] The increase in minimum surface tension in presence of albumin and erythrocyte membranes was accompanied by sudden increases in compressibility at surface tensions of 15-30 mN/m. This suggests a monolayer destabilization and could be indicative of phase transitions in the mixed lipid films due to the presence of the hydrophobic constituents of erythrocyte membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号