首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
考察了氢化苯乙烯-丁二烯嵌段共聚弹性体(SEBS)及其马来酸酐接枝共聚物(SEBS-g-MA)增韧聚苯醚(PPO)体系。DSC谱图显示,PPO与SEBS的共混物仅有一个Tg,两者完全相容;PPO与SEBS-g-MA的共混物存在两个Tg,只能达到部分相容。力学性能研究表明,在PPO/SEBS体系中,基体中分散相SEBS的相界面模糊,无法引发基体银纹和剪切屈服,增韧PPO的效果有限;而部分相容的PPO/SEBS-g-MA共混物显示了增韧剂良好的相界面引发基体银纹和剪切屈服的作用,其缺口冲击强度在SEBS-g-MA质量分数为20%时达到1260J/m的超韧性。亚微相态显示,SEBS在PPO中呈现条形分散相的"海岛"结构;而SEBS-g-MA在基体中呈现网络结构。流变性能研究显示,PPO/SEBS共混物的表观粘度均高于PPO,并随SEBS的含量增加而变大;而PPO/SEBS-g-MA则完全相反。  相似文献   

2.
考察了氢化苯乙烯-丁二烯嵌段共聚弹性体(SEBS)及其马来酸酐接枝共聚物(SEBS-g/MA)增韧聚苯醚(PPO)体系,DSC谱图显示,PPO与SEBS的共混物仅有一个Tg,两者完全相容;PPO与SEBS-g-MA的共混物存在两个Tg,只能达到部分相容。力学性能研究表明,在PPO/SEBS体系中,基体只发散相SEBS的相界面模糊,无法引发基体银纹和剪切屈服,增韧PPO的效果有限;而部分相容的PPO/SEBS-g-MA共混物显示了增韧剂良好的相界面引发基体银纹和剪切屈服的作用,其缺口冲击强度在SEBS-g-MA质量分数为20%时达到1260J/m的超韧性。亚微相态显示,SEBS和PPO中呈现条形分散相的“海岛”结构;而EBS-g-MA在基体中呈现网络结构。流变性能研究显示,PPO/SEBS共混物的表观粘度均高于PPO,并随SEBS的含量增加而变大;而PO/SEBS-g-MA则完全相反。  相似文献   

3.
研究了马来酸酐接枝的聚乙烯辛烯弹性体 /半结晶性塑料共混物 (TPEg)对热塑性共聚聚酯(PETG) /聚乙烯辛烯弹性体 (TPE)共混体系增容增韧作用的影响 .马来酸酐接枝物显著地改善了PETG与TPE之间的相容性 ,导致TPE分散相颗粒细化 ,并促使分散相颗粒面间距等于甚至小于实现脆韧转变所需的临界面间距 .在固定PETG基体含量为 85wt %的前提下 ,当TPEg在 15 %分散相中的含量由 2 0 %增加到30 %时 ,即TPEg在共混体系中的含量由 3 %增加到 4 5 %时 ,共混体系出现了由脆性到韧性的转变 ,冲击强度急剧升高  相似文献   

4.
采用熔融挤出法制备了不同相容剂含量的PP/POE共混体系,测试了不同体系的脆韧转变温度、热性能和力学性能.结果表明,乙烯-丙烯多嵌段共聚物相容剂的加入降低了PP/POE共混物的脆韧转变温度,提高了共混物的韧性.AFM和STEM照片显示相容剂的加入减小了橡胶分散相的临界粒子间距,PP和POE在两相界面结合处相互扩散或渗透,实现了POE弹性体在PP树脂中合适的尺度分布以及良好的形态分散.当相容剂含量达到10%时,POE分散相尺寸细小均匀,分散相粒子粒径为0.54μm,粒子间距为0.1 μm,PP结晶链段更多地插入到弹性体内部,弹性体POE分散相形成明显的“硬核-软壳”结构.DSC曲线中结晶峰和熔融峰的变化说明适量的相容剂对于材料结晶度的提高具有一定的促进作用.力学性能测试结果可以看出相容剂的加入在提高材料韧性,降低其脆韧转变温度的同时也保持了材料的刚性性能.  相似文献   

5.
PS/SBS/CaCO_3共混物体系脆韧转变   总被引:8,自引:0,他引:8  
研究了不同组成的聚苯乙烯 (PS)基三元共混物体系的缺口冲击性能、拉伸性能和断面形貌以及相形态 .实验结果表明 ,微米级碳酸钙的增韧改性效果稍好于纳米级碳酸钙 ,但增强效果却相反 .随着分散相含量的增加 ,3种共混物韧性皆明显提高 ,拉伸曲线向右下方移动 ,应变软化减弱 ,应变硬化增强 .研究发现了随分散相含量的增加 ,PS共混物出现了脆韧转变 ,而且脆韧转变以不同的形式表现了出来 ,即冲击强度、断面形貌以及拉伸曲线在同一区间同时出现了转变  相似文献   

6.
环氧化三元乙丙橡胶增韧聚对苯二甲酸丁二酯的脆韧转变   总被引:3,自引:0,他引:3  
环氧化的三元乙丙橡胶(eEPDM)与聚对苯二甲酸丁二酯(PBT)共混可以使PBT共混体的缺口冲击强度获得很大的提高.当eEPDM橡胶浓度为24wt%时,PBTeEPDM共混体的缺口冲击强度是纯PBT的12倍.随着eEPDM含量的增加,在室温下PBTeEPDM共混体出现了明显的脆韧转变,其脆韧转变的临界粒子间距为0.49μm.橡胶的加入及含量的增加使PBT体系的脆韧转变温度(TBD)向低温移动,且PBTuEPDM与PBTeEPDM共混体脆韧转变温度的差随橡胶含量的增加而逐渐增大.扫描电镜照片表明,在橡胶组成相同的情况下,PBT基体中分散的eEPDM粒子明显小于未环氧化的EPDM粒子.且eEPDM橡胶的粒子间距(ID)也明显地低于uEPDM橡胶粒子的ID,这导致PBTeEPDM共混体系在室温下出现脆韧转变.  相似文献   

7.
通过多单体熔融接枝的方法制备出了具有较高接枝率的ABS接枝物 (ABS g (MAH co St) ) ,并对其接枝机理进行了初步探讨 .研究表明 ,MAH、St接枝ABS时 ,反应主要发生在ABS中聚丁二烯的双键部位 .同时 ,当MAH与St的用量比约为 1:1时接枝率达到最高 .ABS g (MAH co St)作为尼龙 6 (PA6 ) ABS共混体系相容剂起到了良好的增容效果 .实验证明 ,相容剂使用前后 ,共混物的相区尺寸由几十 μm减小到 1μm以下 ,且分布更加均匀 ;共混物的拉伸强度和冲击强度等力学性能也同时得到均衡改善 .  相似文献   

8.
研究了非晶的聚氯乙烯(PVC)/丁腈橡胶(NBR)共混物脆韧转变特性,主要包括形态参数─—分散相粒径(d)、体积分数()、特别是分散相粒径分布(б)对其脆动转变性能的影响.结果表明,当d<临界值(d)或>临界值()时,PVC/NBR产生脆韧转变.而且dC随。的增大而减小;随б的增大而增大。增大不利于增韧和脆韧转变的发生。也是影响聚合物共混物脆韧转变的重要形态参数,理论预示与实验结果很好相符.结果并给出PVC/NBR共混物的冲击韧性也是分散相粒间基体层厚度(T)的单参数函数.当T>T时,共混物为脆性;当T≤T时,共混物韧性剧增成为超韧合金.虽然,以分子链结构参数分类,PVC介于准韧性和脆性聚合物之间.结果证实,准韧性聚合物共混物脆韧转变的Tc判据仍然适用于PVC/NBR共混物.  相似文献   

9.
聚合物/橡胶共混物脆韧转变机理的定量化研究   总被引:1,自引:0,他引:1  
由于聚丙烯(PP)、聚酰胺(PA)类准韧性聚合物在室温低速拉伸时为韧性破坏,因此Bucknall提出的室温下拉伸蠕变试验体积应变方法、不能用于表征这类共混物的脆韧转变机制.应用时温等效原理,可使低速低温拉伸试验和室温冲击试验相关等效.由此提出在聚合物的脆化温度下拉伸蠕变体积应变方法适用于所有的聚合物共混物的增韧机理的定量化研究.结果给出,当体积应变-轴向应变曲线的斜率用K表示时:室温冲击脆性PP的K=0.76,主要是空洞-银纹化损伤机制;超高韧性PP/EPDM(V_(?)=0.30)的K≈0,主要是微剪切损伤机制.从而定量化的确认了这种损伤机制的转化是准韧性聚合物PP/橡胶共混物产生脆韧转变的根本原因.  相似文献   

10.
动态固化聚丙烯/环氧树脂共混物的研究   总被引:3,自引:0,他引:3  
将动态硫化技术应用于热塑性树脂 热固性树脂体系 ,制备了动态固化聚丙烯 (PP) 环氧树脂共混物 .研究了动态固化PP 环氧树脂共混物中两组分的相容性、力学性能、热性能和动态力学性能 .实验结果表明 ,马来酸酐接枝的聚丙烯 (PP g MAH)作为PP和环氧树脂体系的增容剂 ,使分散相环氧树脂颗粒变细 ,增加了两组分的界面作用力 ,改善了共混物的力学性能 .与PP相比 ,动态固化PP 环氧树脂共混物具有较高的强度和模量 ,含 5 %环氧树脂的共混物拉伸强度和弯曲模量分别提高了 30 %和 5 0 % ,冲击强度增加了 15 % ,但断裂伸长率却明显降低 .继续增加环氧树脂的含量 ,共混物的拉伸强度和弯曲模量增加缓慢 ,冲击强度无明显变化 ,断裂伸长率进一步降低 .动态力学性能分析 (DMTA)表明动态固化PP 环氧树脂共混物是两相结构 ,具有较高的储能模量 (E′)  相似文献   

11.
The effect of various diallyl (diallyl ortho phthalate, diallyl terephthalate and diethylene glycol diallyl carbonate) and triallyl monomers (triallyl cyanurate and triallyl isocyanurate) on the processability of polyphenylene oxide (PPO) was studied. The solubility parameters of the monomers indicated that diallyl orthophalate, dially terephthalate and triallyl cyanurate should be miscible with PPO suggesting their applicability as reactive plasticizers to improve the processability of PPO. Rheological studies of 60:40 wt:wt PPO:allylic blends indicate that the addition of 40 wt% of allylic monomers significantly improved processability – blends of 60PPO:40DEGDAC indicates the highest viscosity and the highest Tg. Rheological studies and dynamic mechanical analysis on various PPO/DAOP blends show that the increasing amounts of DAOP progressively decreases the viscosity and Tg of the blends. Phase separation at room temperature was observed by visual opacity, cloud point studies and DMTA in PPO:DAOP blends with less than 60 wt% PPO but at elevated temperatures the blends were miscible.  相似文献   

12.
Abstract

Polyester elastomer (PEL) blends having a hard segment of polyester (PBT), soft segment of polyether (PTMG), and a liquid crystalline copolyester (LCP), poly(benzoate-naphthoate) were prepared with a twin-screw extruder. Test specimens for thermal properties were prepared by injection molding. Rheological properties and morphology were investigated by Instron capillary rheometer (ICR) and scanning electron microscopy (SEM). Thermal properties of the LCP/PEL blends were investigated by DSC, dilatometer, heat deflection temperature tester, and a Rheovibron viscometer. DSC study revealed a partial miscibility between LCP and PEL. It was found that the LCP acted as a nucleating agent for the crystallization of PEL in the LCP/PEL blends. The dimensional and thermal stability of the blends were increased by increasing the LCP cont-ent. The storage modulus (E' was improved by increasing the LCP content. The blend viscosity showed a minimum value at 5 wt% of LCP which increased by increasing the LCP content above 5 wt% of LCP The morphology of the LCP/PEL blends showed poor interfacial adhesion between the two phases, and the fibrillar structure of LCP phase in the matrix was affected by the LCP content, shear rate, and extrusion temperature. The morphology of the blends was found to be affected by their compositions and processing conditions.  相似文献   

13.
通过采用典型的热力学不相容共混体系聚烯烃弹性体/聚苯乙烯(POE/PS),利用流变学和形态研究的方法,考察了不同相形态(海岛结构和双连续结构)对聚合物反应共混过程的影响.研究发现相形态对聚合物原位增容共混反应有显著的影响,界面反应的进程与界面形态的变化能力直接相关.对于双连续结构的共混物,其形态稳定性最差,因而最有利于界面反应的发生;而在海岛结构的共混体系中,界面反应的进程则取决于界面变形的难易程度,黏度比小的体系更容易发生界面反应。  相似文献   

14.
α, β-Bis(hydroxyphenol) tetramethyl bisphenol-A polysulfone (PSUT) was synthesized by two different methods, one using a strong base, the other using a weak base. The bifunctional polysulfone containing tetramethyl bisphenol-A chain ends was exploited as a model telechelic that can be used for the preparation of ABA triblock copolymers containing poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) as A segments and PSUT as B segments. PSUT and PPO were incorporated into triblock copolymers by an oxidative coupling copolymerization of PSUT with 2,6-dimethylphenol or by the redistribution of PPO in the presence of PSUT. The mechanism of block copolymerization is discussed. DSC studies indicate that short immiscible PPO and PSUT segments incorporated into a triblock copolymer do not exhibit phase separation. Polymer blends of the PPO–PSUT–PPO triblock copolymers with PPO homopolymer were analyzed by DSC. Both miscible and phase-separated blends can be prepared depending on the molecular weight of both PPO homopolymer and of the PPO segment present in the triblock copolymer. Polymer blends of the PPO–PSUT–PPO triblock copolymer with PSUT were miscible at all compositions.  相似文献   

15.
Polystyrene (PS), being an amorphous polymer is immiscible with other polymers. To engender miscible blends, PS has been functionalized with an active amino‐functional group on the molecular chains of PS to yield amino‐substituted polystyrene (APS), which serves as a reactive compatibilizer. The compatibilization effect of amino functionalized polystyrene on the rubber toughening was explored and results were compared in terms of morphology, thermal, and mechanical properties of PS/SEBS‐g‐MA versus APS/SEBS‐g‐MA blends. In addition, the effect of rubber content on the blend morphology and mechanical properties were investigated. An appreciable change in the thermal stability of APS blends in comparison with PS blend has been probed. A marked correlation has been observed between phase morphology and thermal stability. Use of APS produced the compatibilized blends which render improved blend morphology, enhanced thermal and mechanical properties. Optimal thermal, morphological and mechanical profiles were depicted by 20‐wt% APS blend. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Recycled poly(ethylene terephthalate) (R‐PET) was blended with four types of polyethylene (PE), linear low density polyethylene (LLDPE; LL0209AA, Fs150), low density polyethylene (LDPE; F101‐1), and metallocene‐LLDPE (m‐LLDPE; Fv203) by co‐rotating twin‐screw extruder. Maleic anhydride‐grafted poly(styrene‐ethylene/butyldiene‐styrene) (SEBS‐g‐MA) was added as compatibilizer. R‐PET/PE/SEBS‐g‐MA blends were examined by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), and mechanical property testing. The results indicated that the morphology and properties of the blends depended to a great extent on the miscibility between the olefin segments of SEBS‐g‐MA and PE. Due to the proper interaction between SEBS‐g‐MA and LDPE (F101‐1), most SEBS‐g‐MA, located at the interface between two phases of PET and LDPE to increase the interfacial adhesion, lead to better mechanical properties of R‐PET/LDPE (F101‐1) blend. However, both the poor miscibility of SEBS‐g‐MA with LLDPE (LL0209AA) and the excessive miscibility of SEBS‐g‐MA with LLDPE (Fs150) and m‐LLDPE (Fv203) reduced the compatibilization effect of SEBS‐g‐MA. DSC results showed that the interaction between SEBS‐g‐MA and PE obviously affected the crystallization of PET and PE. DMA results indicated that PE had more influence on the movement of SEBS‐g‐MA than PE did. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Summary: The present communication reports the first use of electron tomography in reconstructing the three‐dimensional morphology in thermoplastic elastomer blends. The blends investigated were dynamically vulcanized blends of ethylene‐propylene‐diene (EPDM) rubber/poly(propylene)/oil and polystyrene‐block‐(ethylene‐co‐butylene)‐block‐polystyrene (SEBS)/poly(propylene)/oil. An easy identification of blend morphology could be carried out at blend compositions, where conventional transmission electron microscopic imaging gives misleading information. This technique gives a higher resolution than any other microscopic technique, and is applicable to blends with dispersed as well as co‐continuous morphologies.

Example of a tomographic model of partially co‐continuous SEBS phases in a SEBS/PP/oil thermoplastic blend. Only the contours of the SEBS phase are shown.  相似文献   


18.
采用熔体共混的方法制备了两种增容剂增容的聚酰胺1010/聚丙烯(PA1010/PP)共混物,通过扫描电镜(SEM)、力学性能和差示扫描量热(DSC)测试,对动态保压注射成型(动态)和普通注射成型(静态)中增容剂POE-g-MAH(马来酸酐接枝乙烯-辛烯共聚物)和PTW(乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯共聚物)对PA1010/PP共混物的增容作用进行了比较研究.研究结果表明,普通注射成型中,PTW增容体系具有更小的分散相粒子,在DSC测试中出现两个结晶峰,即出现异相成核结晶和均相成核结晶,具有更好的拉伸和冲击性能,增容作用更佳.动态保压注射成型中施加剪切可以提高所有共混物的拉伸强度、拉伸模量和缺口冲击强度,PTW和POE-g-MAH两种增容剂增容体系冲击性能相近,但POE-g-MAH增容体系的分散相相区尺寸减小明显、分布均匀性显著增加,材料冲击强度增加幅度更大,表明剪切更有利于POE-g-MAH增容作用的进行.两种增容剂增容作用的不同源于它们化学组成的不同引起的材料形态差别.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号