首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Natural gecko array wearless dynamic friction has recently been reported for 30,000 cycles on a smooth substrate. Following these findings, stiff polymer gecko-inspired synthetic adhesives have been proposed for high-cycle applications such as robot feet. Here we examine the behavior of high-density polyethylene (HDPE) and polypropylene (PP) microfiber arrays during repeated cycles of engagement on a glass surface, with a normal preload of less than 40 kPa. We find that fiber arrays maintained 54% of the original shear stress of 300 kPa after 10,000 cycles, despite showing a marked plastic deformation of fiber tips. This deformation could be due to shear-induced plastic creep of the fiber tips from high adhesion forces, adhesive wear, or thermal effects. We hypothesize that a fundamental material limit has been reached for these fiber arrays and that future gecko synthetic adhesive designs must take into account the high adhesive forces generated to avoid damage. Although the synthetic material and natural gecko arrays have a similar elastic modulus, the synthetic material does not show the same wear-free dynamic friction as the gecko.  相似文献   

2.
与传统的传感器设备阵列相比,由于结构更为简单,具有广泛检测兼容性的光纤系统逐渐成为分布式监测的有力候选者。然而,受工作机制的限制,大多数光纤传感器仍局限于对折射率等物理参数进行探测,一种用于环境化学监测的全光纤分布式传感系统亟待研发。本工作中,我们向化学气相沉积法生长的石墨烯光子晶体光纤(Gr-PCF)中引入了一种化学传感机制。初步结果表明,石墨烯光子晶体光纤可以选择性地检测浓度为ppb级的二氧化氮气体,并在液体中表现出离子敏感性。石墨烯光子晶体光纤与光纤通信系统的波分、时分复用技术结合后,将为实现分布式光学传感环境问题提供巨大的潜力和机会。  相似文献   

3.
Using principles inspired by the study of naturally occurring sticky systems such as the micro- and nanoscale fibers on the toes of geckos and the adhesive proteins secreted by marine animals such as mussels, this study describes the development and evaluation of a novel patterned and coated elastomeric microfibrillar material for enhanced repeatable adhesion and shear in wet environments. A multistep fabrication process consisting of optical lithography, micromolding, polymer synthesis, dipping, stamping, and photopolymerization is described to produce uniform arrays of polyurethane elastomeric microfibers with mushroom-shaped tips coated with a thin layer of lightly cross-linked p(DMA-co-MEA), an intrinsically adhesive synthetic polymer. Adhesion and shear force characterization of these arrays in contact with a glass hemisphere is demonstrated, and significant pull-off force, overall work of adhesion, and shear force enhancements in submerged aqueous environments are shown when compared to both unpatterned and uncoated samples, as well as previously evaluated patterned and coated arrays with differing geometry. Such materials may have potential value as repeatable adhesives for wet environments, such as for medical devices.  相似文献   

4.
Zhang H  Nie S  Etson CM  Wang RM  Walt DR 《Lab on a chip》2012,12(12):2229-2239
This paper describes a novel method for fabricating and sealing high-density arrays of femtoliter reaction chambers. We chemically etch one end of a 2.3 mm diameter glass optical fiber bundle to create an array of microwells. We then use a contact printing method to selectively modify the surface of the material between microwells with a hydrophobic silane. This modification makes it possible to fill the wells with aqueous solution and then seal them with a droplet of oil, forming an array of isolated reaction chambers. Individual β-galactosidase molecules trapped in these reaction chambers convert a substrate into a fluorescent product that can be readily detected because a high local concentration of product is achieved. This binary readout can be used for ultra-sensitive measurements of enzyme concentration. We observed that the percentage of wells showing enzyme activity was linearly dependent on the concentration of soluble β-galactosidase in the picomolar range. A similar response was also observed for streptavidin-β-galactosidase captured by biotinylated beads. These arrays are also suitable for performing single-molecule kinetics studies on hundreds to thousands of enzyme molecules simultaneously. We observed a broad distribution of catalytic rates for individual β-galactosidase molecules trapped in the microwells, in agreement with previous studies using similar arrays that were mechanically sealed. We have further demonstrated that this femtoliter fiber-optic array can be integrated into a PDMS microfluidic channel system and sealed with oil on-chip, creating an easy to use and high-throughput device for single-molecule analysis.  相似文献   

5.
Studies of one-dimensional nanostructures of various types (such as quantum wires, nanorods, nanotubes and nanobelts) have progressed substantially during the past decade and have been reviewed by a number of authors. Here, we provide a concise overview of the synthesis and special properties of arrays of parallel nanorods, whose behavior is often quite distinct from that of individual nanorods of the same material. We show that the distinctive behavior of such nanorod arrays may occur due to their exhibiting either additive or emergent properties. The former originates from a simple amplification of some advantageous property shown by a single nanorod, thus making it usable in a practical device; while the latter necessarily involves the presence of the array, and would not be observable from a single nanorod. Nanorod arrays have been shown to have possible applications in diverse areas that include nanolasers, microcavities, surface enhanced Raman effect, photovoltaic cells, field emission sources, gas sensing, electrical discharge and in hydrophobic surfaces. We first present an overview of some of the physical and chemical synthesis strategies for nanorod arrays, followed by a brief review of their applications in the areas just mentioned.  相似文献   

6.
Since the successful growth of carbon nanotubes, one-dimensional materials have been a focused research field both because of their fundamental importance and the wide-ranging potential applications in nano devices. Many approaches are used to fabricate nanowires, such as crystal growth. In order to obtain nanowires whose growth is more easily controlled, electrochemical synthesis in a template is taken as one of the most efficient methods. To date, Co, Fe, Ni, CuCo1-3 and other nanowire arrays have been fabricated successfully by electrodepositing corresponding metal ion into the porous aluminum oxide (PAO) membrane or other non-magnetic materials. Cadmium sulfide(CdS), as one of the most important semiconductor material, is a n-type semiconductor. The ability to fine tune their fundamental electronic and optical properties by simply varying the cruster size, rather than composition, makes them highly attractive for a variety of possible application. In this paper, we report our work of fabricating CdS nanowire arrays based on AC electrolysis into the pores of an anodic aluminum oxide(AAO), the structure and morphology were characterized by XRD and TEM.  相似文献   

7.
Supramolecular optical chemosensors are useful tools in analytical chemistry for the visualization of molecular recognition information. One advantage is that they can be utilized for array systems to detect multiple analytes. However, chemosensor arrays have been evaluated mainly in the solution phase, which limits a wide range of practical applications. Thus, appropriate solid support materials such as polymer gels and papers are required to broaden the scope of the application of chemosensors as on-site analytical tools. In this review, we summarize the actual approaches for the fabrication of solid-state chemosensor arrays combined with powerful data processing techniques and portable digital recorders for real-world applications.  相似文献   

8.
Nanowire-like materials exhibit distinctive properties comprising optical polarisation, waveguiding, and hydrophobic channelling, amongst many other useful phenomena. Such 1-D derived anisotropy can be further enhanced by arranging many similar nanowires into a coherent matrix, known as an array superstructure. Manufacture of nanowire arrays can be scaled-up considerably through judicious use of gas-phase methods. Historically, the gas-phase approach however has been extensively used for the bulk and rapid synthesis of isotropic 0-D nanomaterials such as carbon black and silica. The primary goal of this review is to document recent developments, applications, and capabilities in gas-phase synthesis methods of nanowire arrays. Secondly, we elucidate the design and use of the gas-phase synthesis approach; and finally, remaining challenges and needs are addressed to advance this field.  相似文献   

9.
Regular patterned arrays of nanomaterials have been widely fabricated and studied for their benefits in construction of novel type of optical, electron and magnetic device1-2, these kinds of devices center on the inorganic materials. With the development of synthesis and application of new type of polymer material, the design and construction of organic nanopolymer have become a great interest. Poly(p-phenylene)(PPP) and some derivatives have been widely investigated as a candidate for high strength, high temperature and conducting polymers, and can be used as electrode materials in electrochemical cells, blue emitting diodes: The polymers obtained by oxidative coupling polymerization of benzene nuclei with aluminum chloride and copper(Ⅱ) chloride is insoluble in all solvent and inflexible, which hinders revealing their basic properties. Introduction of flexible side chains into the aromatic rings can not only render solubility and processibility, but also improve or modify optical and electrical properties of the polymers. As a further step in assembling method and optoelectronic studies, it is attractive to investigate the properties of photoluminescence and electroluminescene of regular patterned arrays of poly(p-phenylene) deriva-tives nanowires.  相似文献   

10.
This paper proposes an approximate adhesion model for fibrillar adhesives for developing a fibrillar adhesive design methodology and compares numerical simulation adhesion results with macroscale adhesion data from polymer microfiber array experiments. A technique for fabricating microfibers with a controlled angle is described for the first time. Polyurethane microfibers with different hardnesses, angles, and aspect ratios are fabricated using optical lithography and polymer micromolding techniques and tested with a custom tensile adhesion measurement setup. Macroscale adhesion and overall work of adhesion of the microfiber arrays are measured and compared with the models to observe the effect of fiber geometry and preload. The adhesion strength and work of adhesion behavior of short and long vertical and long angled fiber arrays have similar trends with the numerical simulations. A scheme is also proposed to aid in optimized fiber adhesive design.  相似文献   

11.
Holographic tweezers have revolutionized the way we do experiments at the micron scale. The possibility of applying controlled force fields on simultaneously trapped micro-particles has allowed to directly probe interactions and mechanical properties of colloids, macromolecules and living cells. Holographic micromanipulation requires the careful shaping of a laser beam that is then focused by a microscope objective onto a micro-hologram in the sample volume. The same objective is used for imaging. That approach is therefore limited to in vitro samples contained in transparent cells that are easily accessed optically. Here we demonstrate that the complex light propagator of a real multimode fiber can be directly measured. That allows to transmit a micro-hologram through a 1 metre long (60 μm core) optical fiber and produce dynamic arrays of focused spots at the fiber output. We show that those spots can be used for interactive holographic micromanipulation of micron sized beads facing the fiber tip. Scanning a single spot across the output fiber we can employ the same fiber as a probe for scanning fluorescence microscopy. Our findings open the way towards the fabrication of endoscopic probes which could be capable of seeing and manipulating single cells deep into biological tissues.  相似文献   

12.
Microsystems based on microwell arrays have been widely used for studies on single living cells. In this work, we focused on the subcellular level in order to monitor biological responses directly on individual organelles. Consequently, we developed microwell arrays for the entrapment and fluorescence microscopy of single isolated organelles, mitochondria herein. Highly dense arrays of 3-μm mean diameter wells were obtained by wet chemical etching of optical fiber bundles. Favorable conditions for the stable entrapment of individual mitochondria within a majority of microwells were found. Owing to NADH auto-fluorescence, the metabolic status of each mitochondrion was analyzed at resting state (Stage 1), then following the addition of a respiratory substrate (Stage 2), ethanol herein, and of a respiratory inhibitor (Stage 3), antimycin A. Mean levels of mitochondrial NADH were increased by 29 % and 35 % under Stages 2 and 3, respectively. We showed that mitochondrial ability to generate higher levels of NADH (i.e., its metabolic performance) is not correlated either to the initial energetic state or to the respective size of each mitochondrion. This study demonstrates that microwell arrays allow metabolic studies on populations of isolated mitochondria with a single organelle resolution.
Figure
Microwell arrays, build up from optical fiber bundles, were used for the entrapment and monitoring by fluorescence microscopy of populations of single mitochondria. Mitochondrial NADH was quantified under several metabolic states to study individual mitochondria responses simultaneously with whole population behaviors.  相似文献   

13.
Synthesis of methane in nanotube channels by a flash   总被引:1,自引:0,他引:1  
Inorganic synthesis of organic molecules is a significant step for the primordial life. Generally, inorganic synthesis of methane necessitates, in addition to catalyst, a high-temperature and high-pressure environment. Here we will show that such an environment could be locally and instantly realized in the channels of single-walled carbon nanotubes (SWNTs) even under room temperature and ultrahigh vacuum conditions just by a visible-light flash, owing to the ultra-photothermal effect of nanomaterials. As a result, methane signals were definitely detected by using a quadrupole mass spectrometer and an optical fiber spectrometer. The mechanisms were interpreted as Fischer-Tropsch synthesis. Our results provide an alternative explanation of abiogenic methane origin.  相似文献   

14.
殷明杰  安全福  钱锦文  张阿平 《化学进展》2011,23(12):2568-2575
在过去几十年中,光纤的应用已经渗透到多个学科领域。光纤的抗电磁干扰、可远程监控、多重监测、体积小及质量轻等特点,使其在传感器研究领域备受关注。聚电解质层层自组装膜构建的光纤传感器自2000年诞生以来,已快速发展成为传感器领域新的研究热点。该类光纤传感器在微量物质的监测方面具有广泛的应用前景。本文从光纤和光纤传感器优点出发,总结了基于层层自组装多层膜的光纤传感器种类、性能、检测原理以及相应的光纤结构和自组装材料;进而结合作者已做的相关工作,论述了在光纤基底上的聚电解质层层自组装及基于自组装膜的光纤传感器的测试;重点综述了近十年层层自组装膜的光纤pH传感器、湿度传感器、气体传感器、生物传感器及其他类型的光纤传感器的制备与应用,并展望了今后聚电解质层层自组装多层膜光纤传感器的发展。  相似文献   

15.
In this study, master of the microlens arrays is fabricated using micro dispensing technology, and then electroforming technology is employed to replicate the Ni mold insert of the microlens arrays. Finally, micro hot embossing is performed to replicate the molded microlens arrays from the Ni mold insert. The resin material is used as the dispensing material, which is dropped on a glass substrate. The resin is exposed to a 380 W halogen light. It becomes convex under surface tension on the glass substrate. A master for the microlens arrays is then obtained. A 150‐nm‐thick copper layer is sputtered on the master as an electrically conducting layer. The electroforming method replicates the Ni mold insert from the master of the microlens arrays. Finally, micro hot embossing is adopted to replicate the molded microlens arrays. The micro hot embossing experiment employs optical films of polymethylmethacrylate (PMMA) and polycarbonate (PC). The processing parameters of micro hot embossing are processing temperature, embossing pressure, embossing time, and de‐molding temperature. Taguchi's method is applied to optimize the processing parameters of micro hot embossing for molded microlens arrays. An optical microscope and a surface profiler are utilized to measure the surface profile of the master, the Ni mold insert and the molded microlens arrays. AFM is employed to measure the surface roughness of the master, the Ni mold insert and the molded microlens arrays. The sag height and focal length are determined to elucidate the optical characteristics of the molded microlens arrays. Copyright © 2009 John & Sons, Ltd.  相似文献   

16.
We present a 3-D thermal analysis of a poly(methyl acrylate) optical fiber to select a method to prevent thermal degradation (TD) of the fiber. Such poly(methyl acrylate)-core optical fibers have been realized in many solar lighting applications. We give the radial and axial temperature distributions on the entrance region of the optical fiber for two solar collector designs and five different preventive methods. The simulation results showed that attachment of a fused quartz rod to the fiber entrance region was an efficient low-cost way to protect the optical fiber. A temperature was predicted for the deformed fiber entrance region of the experimental results from the simulations.  相似文献   

17.
We have designed a series of monomolecular films comprised of four basic structural motifs. We have used these films for a variety of purposes, ranging from support structures for chromophore arrays to the creation of selective and biomimetic interfaces. We will discuss the several different types of interfacial binding chemistry that are used in the construction of these interfacial films, for both monomeric and polymeric layer structures. Following a discussion of the construction of the adlayers, we describe several uses of these assemblies, in areas ranging from adsorption to optical signal processing, and the formation of biomimetic interfacial structures.  相似文献   

18.
The development of smart solutions based on optical fiber technology for any kind of structure such as buildings, aircrafts, or even for human body kinematics, is becoming more and more common. The ability to provide coverings for different structures that can enable monitoring functions beside the esthetic purpose of the covering is an important add‐value characteristic. Nevertheless, an open issue is to find an effective solution for the fabrication and application procedure, preferably that scales at a production level. This article explores the insertion of optical fibers into polymeric PVC foils based on the spread‐coating fabrication process. The success of this integration approach allows the use of photonic technology in different fields with minor application issues. The material choice for the substrate is a crucial step when choosing integrated solution. Three PVC paste formulations were explored in order to guarantee the optimal integration of optical fiber. A high‐viscosity and not monolithic paste formulation emerged as the best choice. This formulation provided the best adhesion, reducing in great scale the surface undulation and paste displacement that the optical fiber tends to do and, its 362% stretch capability is sufficient for special applications, as strain sensitive one. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
聚合物光纤是一种新型的信号传输介质。本文综述了聚合物光纤放大器的研究现状,着重对有机染料和稀土掺杂的聚合物光纤的特性进行了深入的讨论。  相似文献   

20.
Despite the growing importance of synthetic glycans as tools for biological studies and drug discovery, a lack of common methods for the routine synthesis remains a major obstacle. We have developed a new method for automated glycan synthesis that employs the enzymatic approach and a dendrimer as an ideal support within the chemical process. Recovery tests using a hollow fiber ultrafiltration module have revealed that monodisperse G6 (MW = 58 kDa) and G7 (MW = 116 kDa) poly(amidoamine) dendrimers exhibit a similar profile to BSA (MW = 66 kDa). Characteristics of the globular protein-like G7 dendrimer with high solubility and low viscosity in water greatly enhanced throughput and efficiency in automated synthesis while random polyacrylamide-based supports entail significant loss during the repetitive reaction/separation step. The present protocol allowed for the fully automated enzymatic synthesis of sialyl Lewis X tetrasaccharide derivatives over a period of 4 days in 16% overall yield from a simple N-acetyl-d-glucosamine linked to an aminooxy-functionalized G7 dendrimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号