首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用层层自组装的方法,以微米多孔硅胶小球为核,将硅胶纳米粒子多层包覆,制备了核壳型SiO2/SiO2硅胶小球.透射电子显微镜表明这种硅胶小球具有明显的核壳结构,氮气吸附实验证明该硅胶小球是典型的介孔材料,具有良好的介孔结构和窄的孔径分布.将其作为基质制备碳十八键合核壳型SiO2/SiO2色谱固定相,该固定相的碳含量与未...  相似文献   

2.
刘红艳  郭泓雨  周健 《化学学报》2012,70(23):2445-2450
采用耗散粒子动力学模拟的方法研究了抗癌药物输运体系多西紫杉醇与聚乙丙交酯与聚乙二醇的共聚物(PLGA-PEG)的自组装形态, 考察了共聚物浓度、共聚物组成和药物含量等对自组装形态的影响. 模拟结果表明, 不同浓度的PLGA-PEG能够和多西紫杉醇自组装成球状、柱状、层状等结构; 一定的浓度下, 亲水的PEG嵌段将疏水的PLGA嵌段包裹起来形成核壳结构, 可用于疏水药物输运应用. 在比较低的浓度下, 不同组成的PLGA-PEG均会形成球状核壳结构, PEG嵌段较多时壳层较厚核尺寸较小, PLGA嵌段较多时核的尺寸较大但壳层较薄, 综合考虑载药量和稳定性, 模拟结果中PEG嵌段的摩尔分数为60%即PLGA40-PEG60作为载体时性能较佳. 药物的含量对自组装结构也有影响, 药物含量较小时形成球状结构, 药物含量较大时, 则会形成柱状结构. 对PLGA40-PEG60体系, 模拟结果显示药物、聚合物和水的最佳配比为5:10:90. 本工作可为共聚物载药体系的设计与开发提供参考.  相似文献   

3.
基于非共价键作用力的纳米粒子层层组装薄膜   总被引:1,自引:0,他引:1  
非共价键作用力常被用来构筑各种超分子结构,最有效的非共价键驱动力是静电相互作用力,被广泛应用于聚离子间的层层组装.本文简要介绍了基于非共价键驱动力的纳米粒子层层组装薄膜的制备及其组成、表面形貌、厚度和结构等的表征方法;分析了多层组装薄膜形成的普遍原理,认为静电相互作用力可能是主要成膜驱动力;归纳了现今比较常见的几种纳米粒子层层组装的类型,并总结了纳米粒子层层组装潜在的应用前景.  相似文献   

4.
电化学沉积法制备金(核)-铜(壳)纳米粒子阵列   总被引:2,自引:0,他引:2  
曹林有  刁鹏  刘忠范 《物理化学学报》2002,18(12):1062-1067
以组装在有机分子自组装膜/金基底电极上的Au纳米粒子阵列为电化学沉积模板,制备了金(核)-铜 (壳)纳米粒子阵列.选用巯基十一胺(AUDT)和巯基癸烷(DT)混合自组装膜作为基底电极与Au纳米粒子的耦联层,可以在一定的电位下实现金属Cu在Au纳米粒子上的选择性沉积.将沉积电位控制在-0.03 V(vs SCE)时,沉积初期(t ≤ 15 s,沉积粒子粒径 ≤ 20 nm )金(核)-铜 (壳)粒子具有良好的单分散性和近似球形,而且粒径实验值同计算值非常吻合.  相似文献   

5.
张信  储诚灿  黄凯华  苏朝晖 《应用化学》2012,29(12):1433-1437
以聚二烯丙基二甲基氯化铵和聚苯乙烯磺酸钠为构筑单元,通过静电层层自组装制备了多层膜,利用薄膜中存在的抗衡阴离子,选择AuCl-4和PtCl2-6作为Au和Pt的前驱体,通过连续的阴离子交换/还原,原位制备了Au-Pt双金属纳米粒子。 紫外-可见分光光度法、透射电子显微镜和能量色散X射线能谱数据表明,在聚电解质多层薄膜中成功地制备了具有核壳结构的Au@Pt双金属纳米粒子。 这种纳米粒子在电化学催化、燃料电池方面具有潜在的应用价值。  相似文献   

6.
盘登科  张慧 《化学学报》2011,69(13):1545-1552
通过调变镁铁尖晶石的含量, 采用一步共沉淀法制备了一系列具有核壳结构的水滑石型磁性纳米载药粒子, 对其微结构、热稳定性、磁性和药物释放性能进行了系统的研究. 结果表明这种磁性纳米载药粒子是一种具有以镁铁尖晶石为核层、双氯酚酸(Diclofenac, DIC)插层水滑石(DIC-LDH)为壳层的复合纳米粒子, 粒径在90~180 nm之间. 其中壳层DIC-LDH的晶粒尺寸D110和层板电荷密度随磁核含量的增大而逐渐减小. 磁性纳米载药粒子的载药量随磁核含量的增大而逐渐减小, 而其比饱和磁化强度则随着磁核含量的增大逐渐增大. 体外释放实验表明, 无外加磁场时, 磁核含量增大, 壳层DIC-LDH粒径减小, 磁性纳米载药粒子药物释放速率逐渐增大|外加1500 G磁场时, 磁核含量增大, 磁致团聚程度增大, 其药物释放速率逐渐减小.  相似文献   

7.
将侧链偶氮聚电解质应用于聚苯乙烯胶体微球表面的静电层层自组装,得到了偶氮聚电解质和聚二烯丙基二甲基氯化铵多层膜覆盖的核壳微球.实验表明,组装后偶氮苯基团发生了一定程度的解聚集,得到的胶体微球可表现出明显的光色效应.研究进一步采用含肉桂酸酯的光敏聚电解质作为交联的保护壳层,并通过光交联反应使表面层发生交联固化反应.将上述具有核壳结构的胶体球溶解去除聚苯乙烯内核后,得到了含光响应聚电解质的空心微胶囊.  相似文献   

8.
层层组装微胶囊的制备及其智能响应与物质包埋释放性能   总被引:4,自引:1,他引:3  
在胶体微粒模板上进行聚合物间或聚合物和小分子间的交替层层(LBL)组装, 得到核壳微粒, 然后去除胶体微粒得到层层组装微胶囊. 综述了层层组装微胶囊在组装驱动力、智能响应性能和物质包埋与释放等方面的最新研究进展. 首先从组装驱动力和微胶囊结构调控出发, 简述了基于静电和氢键作用的LBL微胶囊的交联方法及交联所引起的微胶囊结构和性能的变化, 介绍了基于新驱动力如共价键作用、 碱基对作用和主客体作用制备LBL微胶囊的技术. 讨论了LBL微胶囊的智能响应性, 包括pH、 温度、 电荷、 光电磁和化学物质响应等. 详细介绍了LBL微胶囊包埋与释放功能物质尤其是药物、 蛋白和酶的方法及其特色, 包括LBL直接包埋与释放、 预吸附或共沉淀包埋与释放、 电荷选择性自沉积包埋与释放及爆释等. 最后, 着眼于微胶囊的靶向传递和功能器件, 介绍了采用静电作用和生物识别作用制备得到的微胶囊阵列.  相似文献   

9.
本文采用原子转移自由基聚合方法合成了聚丙烯酸叔丁酯-聚丙烯腈嵌段共聚物(PtBA-b-PAN),酸解得到聚丙烯酸-聚丙烯腈两亲嵌段共聚物(PAA-b-PAN).随后,PAA-b-PAN嵌段共聚物在水溶液中自组装形成以PAA为壳,PAN为核的胶束.用此胶束为模板,加入FeCl3溶液后得到了壳层负载Fe3+的聚合物纳米粒子,经230℃空气中预氧化,600℃氮气氛煅烧,得到了核壳结构的,具有磁性的碳纳米粒子.用1HNMR,IR,GPC,TGA,TEM,XRD,AGM等技术对嵌段共聚物及纳米粒子进行了表征,结果表明纳米粒子的壳层含γ-Fe2O3,Fe2.5C混合物,核含碳,直径为35±5nm,饱和磁化强度为2.16emu/g.在分离、吸波和传感器等方面具有潜在的应用前景.  相似文献   

10.
核壳型纳米粒子合成方法及其性能的研究进展   总被引:1,自引:0,他引:1  
核壳纳米粒子作为复合纳米粒子一个重要的分支,由于其光、磁和催化等方面的优异性能,近年来引起了人们广泛的关注.本文主要介绍了核壳纳米粒子的制备方法及诸多性能,并对核壳纳米粒子的发展进行了展望.  相似文献   

11.
The fabrication of core-shell structural nanosilica@liposome nanocapsules as a drug delivery vehicle is reported. SiO(2) nanoparticles are encapsulated within liposomes by a W/O/W emulsion approach to form supramolecular assemblies with a core of colloidal particles enveloped by a lipid bilayer shell. A nanosilica core provides charge compensation and architectural support for the lipid bilayer, which significantly improves their physical stability. A preliminary application of these core-shell nanocapsules for hemoglobin (Hb) delivery is described. Through the H-bonding interaction between the hydroxyl groups on nanosilicas and the amino nitrogens of Hb, Hb-SiO(2) nanocomplexes in which the saturated adsorption amount of Hb on SiO(2) is 0.47 g g(-1) are coated with lipids to generate core-shell Hb-SiO(2)@liposome nanocapsules with mean diameters of 60-500 nm and Hb encapsulation efficiency of 48.4-87.9%. Hb-SiO(2)@liposome supramolecular nanovehicles create a mode of delivery that stabilizes the encapsulated Hb and achieves long-lasting release, thereby improving the efficacy of the drug. Compared with liposome-encapsulated Hb and Hb-loaded SiO(2) particles, such core-shell nanovehicles show substantially enhanced release performance of Hb in vitro. This finding opens up a new window of liposome-based formulations as drug delivery nanovehicles for widespread pharmaceutical applications.  相似文献   

12.
A straightforward method for loading hydrophobic materials into commercially available polymer nano- or microparticles is described. PMMA and PS nano/microparticles were swelled by an organic solvent with an ionic surfactant (SDS) to stabilize the particles in aqueous solution. FITC and Ru(dpp)3Cl2 were loaded into those particles based on the principle of "like dissolves like". Further surface modification of the loaded particles was achieved via layer-by-layer (LbL) self-assembly. Culture of fibroblasts with the dye-doped, coated particles showed that the cells internalized the fluorescent particles with no apparent toxic effects. The findings suggest the facile process could be useful in a wide range of applications for fluorescent micro/nanosensors and drug delivery.  相似文献   

13.
Tong W  Song X  Gao C 《Chemical Society reviews》2012,41(18):6103-6124
Nanoengineered multifunctional capsules with tailored structures and properties are of particular interest due to their multifunctions and potential applications as new colloidal structures in diverse fields. Among the available fabrication methods, the layer-by-layer (LbL) assembly of multilayer films onto colloidal particles followed by selective template removal has attracted extensive attention due to its advantages of precise control over the size, shape, composition, wall thickness and functions of the obtained capsules. The past decade has witnessed a rapid increase of research concerning the new fabrication strategies, functionalization and applications of this kind of capsules, particularly in the biomedical fields such as drug delivery, biosensors and bioreactors. In this critical review, the very recent progress of the multilayer capsules is summarized. First, the advances in assembly of capsules by the LbL technique are introduced with focus on tailoring the properties of hydrogen-bonded multilayer capsules by cross-linking, and fabrication of capsules based on covalent bonding and bio-specific interactions. Then the fabrication strategies which can speed up capsule fabrication are reviewed. In the following sections, the multi-compartmental capsules and the capsules that can transform their shape under stimulus are presented. Finally, the biomedical applications of multilayer capsules with particular emphasis on drug carriers, biosensors and bioreactors are described (306 references).  相似文献   

14.
杨忠强  刘凤岐 《化学通报》2004,67(3):163-169,177
综述了近年来各种核壳材料的合成方法,包括聚合法layer-hy-layer(LbL)自组装技术、原位反应法等。并简要介绍了空心材料的制备及核壳材料的应用。  相似文献   

15.
Over the past two decades,layer-by-layer(LbL) assembly of micro/nanocapsules has been of interest for the investigation of bio-nano interactions to explore bio-applications,such as drug delivery.The choice of an appropriate template that can be easily dissolved under mild conditions is one of the challenges for the assembly of LbL capsules.Herein,we report the engineering of LbL capsules with tunable morphologies using cuprous oxide(Cu_2O) particles as templates.Cu_2O particles with cubic,tetradecahedral or spherical morphologies were synthesized via hydrothermal processes,which can be dissolved under mild condition(e.g.,sodium thiosulfate solution).The influence of capsule morphologies on cell association was investigated,which indicates that LbL capsules with cubic geometry promoted cell association up to 4 and 9-fold than tetradecahedral and spherical capsules,respectively.The reported method provides a new avenue for the assembly of LbL capsules with different morphologies,which has the potential for better understanding of biological interactions of LbL capsules.  相似文献   

16.
We report a general and versatile method for the encapsulation of electrically uncharged organic substance in polymeric capsules by using a layer-by-layer (LbL) approach. Electrical charge was induced on the surface of pyrene (uncharged organic substance) with an amphiphilic surfactant (sodium dodecyl sulfate, SDS) by micellar solubilization. The SDS micellar solution of pyrene in water was then deposited on a flat substrate as well as colloidal particles with chitosan as an oppositely charged polyelectrolyte. Pyrene was used as a model drug because it displayed intrinsic fluorescence that allowed us to monitor LbL growth by fluorescence and under confocal laser scanning microscopy (CLSM). To examine the proof of concept, multilayers were coated on the planar support by the LbL method. UV-vis spectroscopy showed regular growth of each layer deposited. Thin film formation was evidenced by scanning electron microscopy. The LbL method was extended to particles where fluorescence spectroscopy revealed LbL growth and transmission electron microscopy (TEM) provided evidence of particle coating. The quantification of dye in each deposited layer further proved LbL growth. The removal of sacrificial core provided thin capsules. The capsules were characterized by TEM and CLSM. The capsules showed potential as a drug delivery system, which is suggested by the slow release of entrapped dye by concentration-dependent diffusion in isotonic saline solution. The kinetics of desorption of pyrene from this thin film was modeled by a pseudo-second-order model.  相似文献   

17.
The layer‐by‐layer (LbL) assembled multilayer films are widely used in the biomedical field for the controlled drug delivery. Here, multilayer films were assembled by LbL technique through alternating deposition of cationic polyurethane (PU) and poly(acrylic acid) (PAA) on glass slides. Methylene blue (MB) was used as a model drug to investigate the loading and release ability of the prepared multilayer film. The results showed that the loading rate and loading amount of MB were greatly influenced by pH value of the dye solution, and the release rate of MB was controlled both by ionic strength and pH value of immersing solution. The result also indicated that the film had a good reversibility of drug loading and release. It suggested that the PU/PAA multilayer film had potential applications in drug delivery and controlled release. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The generation of novel multifunctional materials with hierarchical ordering is a major focus of current materials science and engineering. For such endeavors, fluid interfaces, such as air-liquid and liquid-liquid interfaces, offer ideal platforms where nanoparticles or colloidal particles can accumulate and self-assemble. Different assembly processes and reactions have been performed at fluid interfaces to generate hierarchical structures, including two-dimensional crystalline films, colloidosomes, raspberry-like core-shell structures, and Janus particles, which lead to broad applications in drug delivery and controlled release, nanoelectronics, sensors, food supplements, and cosmetics.  相似文献   

19.
The layer-by-layer (LbL) adsorption technique offers an easy and inexpensive process for multilayer formation and allows a variety of materials to be incorporated within the film structures. Therefore, the LbL assembly method can be regarded as a versatile bottom-up nanofabrication technique. Research fields concerned with LbL assembly have developed rapidly but some important physicochemical aspects remain uninvestigated. In this review, we will introduce several examples from physicochemical investigations regarding the basics of this method to advanced research aimed at practical applications. These are selected mostly from recent reports and should stimulate many physical chemists and chemical physicists in the further development of LbL assembly. In order to further understand the mechanism of the LbL assembly process, theoretical work, including thermodynamics calculations, has been conducted. Additionally, the use of molecular dynamics simulation has been proposed. Recently, many kinds of physicochemical molecular interactions, including hydrogen bonding, charge transfer interactions, and stereo-complex formation, have been used. The combination of the LbL method with other fabrication techniques such as spin-coating, spraying, and photolithography has also been extensively researched. These improvements have enabled preparation of LbL films composed of various materials contained in well-designed nanostructures. The resulting structures can be used to investigate basic physicochemical phenomena where relative distances between interacting groups is of great importance. Similarly, LbL structures prepared by such advanced techniques are used widely for development of functional systems for physical applications from photovoltaic devices and field effect transistors to biochemical applications including nano-sized reactors and drug delivery systems.  相似文献   

20.
Layer-by-Layer (LbL) coatings are promising tools for the biofunctionalization of biomaterials, as they allow stress-free immobilization of proteins. Here, we explore the possibility to immobilize phosvitin, a highly phosphorylated protein viewed as a model of bone phosphoproteins and, as such, a potential promotive agent of surface-directed biomineralization, into biomimetic LbL architectures. Two immobilization protocols are attempted, first, using phosvitin as the polyanionic component of phosvitin/poly-(L-lysine) films and, second, adsorbing it onto preformed chondroitin sulfate/poly-(L-lysine) films. Surprisingly, it is neither possible to embed phosvitin as the constitutive polyanion of the LbL architectures nor to adsorb it atop preformed films. Instead, phosvitin triggers instant massive film disassembly. This unexpected, incidentally detected behavior constitutes the first example of destructive interactions between LbL films and a third polyelectrolyte, a fortiori a protein, which might open a route toward new stimuli-responsive films for biosensing or drug delivery applications. Interestingly, additional preliminary results still indicate a promotive effect of phosvitin-containing remnant films on calcium phosphate deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号