首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 698 毫秒
1.
IntroductionSingle walledcarbonnanotubes(SWNTs)havebeensynthesisedbyusingvariousmethods[1— 3] andthechemicalvapourdeposition (CVD )methodhasbeenconsideredasa promisingmethodto produceSWNTsonanindustrialscale[3— 5] .However ,alltheSWNT productssynthesisedtodateco…  相似文献   

2.
Pyridine-functionalized single-walled carbon nanotubes (SWNTs) are prepared from the addition of a pyridine diazonium salt to nanotubes. The location and distribution of the functional groups is determined by atomic force microscopy using electrostatic interactions with gold nanoparticles. The pyridine-functionalized SWNTs are able to act as cross-linkers and hydrogen bond to poly(acrylic acid) to form SWNT hydrogels. The pyridine-functionalized SWNTs are further characterized using Raman, FTIR, UV/vis-NIR, and X-ray photoelectron spectroscopy and thermogravimetric analysis-mass spectrometry.  相似文献   

3.
Single-walled carbon nanotubes (SWNTs) with amino acids covalently attached to their side walls, viz., “nanotube-aminoacids,” have been prepared starting from colloidal solutions of fluorinated SWNTs (F-SWNTs) and amino acids in o-dichlorobenzene and heating at 80–150 °C in the presence of pyridine. The syntheses were carried out with the F-SWNTs of approximately 2: 1 (C: F) stoichiometry and several natural α-aino acids with both pro-tected and unprotected carboxyl groups, such as glycine ethyl ester hydrochloride, L-serine ethyl ester hydrochloride, l-cysteine, and trans-4-hydroxy-l-proline. The nanotube-aminoacids have been characterized by Raman and FTIR spectroscopy, atomic force, scanning, and transmission electron microscopies, and thermal gravimetric analysis (TGA). Based on TGA data, the degree of sidewall functionalization in the synthesized SWNT derivatives was estimated to be in the range from one of 32 to one of 8 carbon atoms, depending on the amino acid nature and reaction conditions used. The amino acid-functionalized SWNTs, prepared in this work by simple and inexpensive one-step method, can be valuable precursors for peptide synthesis and targeted drug delivery, design and fabrication of nanocomposites and fibers, and other biomedical and engineering applications. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1035–1043, May, 2008.  相似文献   

4.
The reactions of single-walled carbon nanotubes (SWNTs) with succinic or glutaric acid acyl peroxides in o-dichlorobenzene at 80-90 degrees C resulted in the addition of 2-carboxyethyl or 3-carboxypropyl groups, respectively, to the sidewalls of the SWNT. These acid-functionalized SWNTs were converted to acid chlorides by derivatization with SOCl(2) and then to amides with terminal diamines such as ethylenediamine, 4,4'-methylenebis(cyclohexylamine), and diethyltoluenediamine. The acid-functionalized SWNTs and the amide derivatives were characterized by a set of materials characterization methods including attenuated total reflectance (ATR) FTIR, Raman and solid state (13)C NMR spectroscopy, transmission electron microscopy (TEM), and thermal gravimetry-mass spectrometry (TG-MS). The degree of SWNT sidewall functionalization with the acid-terminated groups was estimated as 1 in 24 carbons on the basis of TG-MS data. In comparison with the pristine SWNTs, the acid-functionalized SWNTs show an improved solubility in polar solvents, for example, alcohols and water, which enables their processing for incorporation into polymer composite structures as well as for a variety of biomedical applications.  相似文献   

5.
CVD法制备单壁碳纳米管的纯化与表征   总被引:4,自引:1,他引:4  
针对CVD法合成的单壁碳纳米管的特点提出了较为有效的纯化方法,并对纯化后碳管的存在形式进行了表征.结果表明,CVD法制备的单壁碳纳米管中所含的载体和催化剂绝大部分可以通过盐酸除去.在表面活性剂溶液中超声分散碳纳米管,可以使管与无定形碳及石墨状碎片进行有效的剥离.空气加热氧化法和稀硝酸回流法可有效地去除碳杂质,稀硝酸回流可以在纯化的同时对管的末端及侧壁进行功能化.  相似文献   

6.
We report a chemical processing technology that allows the continuous spinning of single-walled carbon nanotubes (SWNTs)-nylon 6 (PA6) fibers by the in-situ polymerization of caprolactam in the presence of SWNTs, which simultaneously optimizes the morphology of the composite. We show that caprolactam is an excellent solvent for carboxylic-acid-functionalized SWNTs (SWNT-COOH) and that this allows the efficient dispersal of the SWNTs and subsequent grafting of PA6 chains to the SWNTs through condensation reactions between the carboxylic-acid group on SWNT-COOH and the terminal amine group of PA6. The existence of a graft copolymer between the PA6 chains and the SWNTs is demonstrated by IR, TGA, and AFM studies, and we show that the solubility of the polymerized material in formic acid is controlled by the degree of graft copolymerization. The amount of grafted PA6 chains that are attached to the SWNTs can be adjusted by controlling the concentration of the initiator (6-aminocaproic acid). The process leads to a uniform dispersion of the SWNTs, and the presence of the graft copolymer increases the polymer/SWNT compatibility while strengthening the interfacial interaction between the nanotube and matrix. The Young's modulus, tensile strength, and thermal stability of the SWNT-reinforced composite fibers produced by this process are significantly improved.  相似文献   

7.
A slow reaction process has been successfully used to synthesize Prussian blue/single‐walled carbon nanotubes (PB/SWNTs) nanocomposites. Electrochemical and surface characterization by cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV‐vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD) confirmed the presence of PB nanocrystallites on SWNTs. PB/SWNTs modified glassy carbon electrode (GCE) exhibits efficient electron transfer ability and high electrochemical response towards hydrazine. The fabricated hydrazine sensor showed a wide linear range of 2.0×10?6–6.0×10?3 M with a response time less than 4 s and a detection limit of 0.5 μM. PB/SWNTs modified electrochemical sensors are promising candidates for cost‐effective in the hydrazine assays.  相似文献   

8.
In this work, we synthesized electroactive cubic Prussian blue (PB) modified single‐walled carbon nanotubes (SWNTs) nanocomposites using the mixture solution of ferric‐(III) chloride and potassium ferricyanide under ambient conditions. The successful fabrication of the PB‐SWNTs nanocomposites was confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV‐vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and cyclic voltammetry (CV). PB nanocrystallites are observed to be finely attached on the SWNTs sidewalls in which the SWNTs not only act as a carrier of PB nanocrystallites but also as Fe(III)‐reducer. The electrochemical properties of PB‐SWNTs nanocomposites were also investigated. Using the electrodeposition technique, a thin film of PB‐SWNTs/chitosan nanocomposites was prepared onto glassy carbon electrode (GCE) for the construction of a H2O2 sensor. PB‐SWNTs/chitosan nanocomposites film shows enhanced electrocatalytic activity towards the reduction of H2O2 and the amperometric responses show a linear dependence on the concentration of H2O2 in a range of 0.5–27.5 mM and a low detection limit of 10 nM at the signal‐to‐noise ratio of 3. The time required to reach the 95% steady state response was less than 2 s. CV studies demonstrate that the modified electrode has outstanding stability. In addition, a glucose biosensor is further developed through the simple one‐step electrodeposition method. The observed wide concentration range, high stability and high reproducibility of the PB‐SWNTs/chitosan nanocomposites film make them promising for the reliable and durable detection of H2O2 and glucose.  相似文献   

9.
HiPco single-walled carbon nanotubes (SWNTs) have been sidewall-functionalized with phthalocyanine addends following two different approaches: a straightforward Prato reaction with N-octylglycine and a formyl-containing phthalocyanine, and a stepwise approach that involves a former Prato cycloaddition to the double bonds of SWNTs using p-formyl benzoic acid followed by esterification of the derivatized nanotubes with an appropriate phthalocyanine molecule. The two materials obtained by these routes comprise different carbon/Pc-addenda ratios, as evidenced by Raman, TGA, and photophysical studies. The occurrence of electron transfer from photoexcited phthalocyanines to the nanotube framework in these ZnPc-SWNT ensembles is observed in transient absorption experiments, which confirm the absorption of the one-electron oxidized ZnPc cation and the concomitant bleaching of the van Hove singularities typical from SWNTs. Charge-separation (i.e., 2.0 x 1010 s(-1)) and charge-recombination (i.e., 1.5 x 106 s(-1)) dynamics reveal a notable stabilization of the radical ion pair product in dimethylformamide.  相似文献   

10.
Chemical functionalization of single‐walled carbon nanotubes (SWNTs) has constructed plenty of new structures with useful properties. But the modification was often confined to organic molecules, either by covalence or noncovalence. In this report, SWNTs were successfully functionalized with one kind of electroactive inorganic compounds: chromium hexacyanoferrate (Cr hcf). The resulting Cr hcf/SWNTs nanocomposites were confirmed by Field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), UV‐vis absorption spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. Cr hcf crystallites are observed to be finely attached to the SWNTs. The electrochemical properties of Cr hcf/SWNTs nanocomposites were also investigated. The nanocomposites modified glassy carbon (GC) electrode shows high electrocatalytic activity towards the reduction of H2O2 and the amperometric responses show a linear dependence on the concentration of H2O2 in a range of 0.5 μM to 10 mM (R=0.9989). In addition, the sensor has good stability and reproducibility.  相似文献   

11.
Grafting of aldehyde structures to single‐walled carbon nanotubes (SWNTs) has been carried out to endow the nanotubes with appropriate wettability. The results of Fourier transform infrared (FTIR) spectroscopy, ultraviolin‐visible‐near infrared (UV‐VIS‐NIR) spectroscopy, and Raman spectroscopy provide the supporting evidence of aldehyde structures covalently attached to SWNTs. The improved wettability of aldehyde‐functionalized SWNTs (f‐SWNTs) was demonstrated by their good dispersion in organic medium, namely, ethanol and phenolic resin. The prospective covalent bonding between aldehyde structures on the surfaces of f‐SWNTs and phenolic resin makes it possible to prepare an integrated composite with the enhanced‐interfacial adhesion. The f‐SWNT composites, therefore, show much higher average values of dσ/dWCNT and dE/dWCNT (i.e., tensile strength and Young's modulus per unit weight fraction) compared with the composites filled with pristine SWNTs or MWNTs. The respective maxima are 9680 MPa and 320 GPa. It is thus feasible for f‐SWNTs to prepare the moderately enhanced but lightweight phenolic composites. Furthermore, the incorporation of f‐SWNTs does not limit the application of phenolic resin as insulation material. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6135–6144, 2009  相似文献   

12.
Ring-opening surface initiated polymerization of l-proline N-carboxyanhydride was performed from amine functionalized single (SWNTs) and multi walled carbon nanotubes (MWNTs). The primary amines were grafted on the surfaces via a well-studied Diels–Alder cycloaddition. The initiator attachment helped the debundling of carbon nanotubes as shown by atomic force microscopy (AFM) studies where only small aggregates were observed. Thermogravimetric analysis revealed high wt% of grafted polyproline on the carbon nanotubes surface after the ring-opening polymerization. AFM studies showed a rather uniform layer of grafted polyproline from both MWNTs and SWNTs. The grafting of PLP on the surface was also verified by FTIR and Raman spectroscopy as well as 1H NMR in CDCl3/d-TFA. The polyproline grafted carbon nanotubes (CNTs) were readily dissolved in organic solvents in contrast to the insoluble pristine and amine-functionalized CNTs.  相似文献   

13.
We compare popular analytical techniques, including scanning and transmission electron microscopy (SEM and TEM), thermogravimetric analysis (TGA), and Raman and near-infrared (NIR) spectroscopy, for the evaluation of the purity of bulk quantities of single-walled carbon nanotubes (SWNTs). Despite their importance as imaging techniques, SEM and TEM are not capable of quantitatively evaluating the purity of typical inhomogeneous bulk SWNT samples because the image frame visualizes less than 1 pg of SWNT material; furthermore, there is no published algorithm to convert such images into numerical data. The TGA technique is capable of measuring the amount of metal catalyst in an SWNT sample, but does not provide an unambiguous separation between the content of SWNTs and carbonaceous impurities. We discuss the utilization of solution-phase near-infrared spectroscopy and solution-phase Raman spectroscopy to quantitatively compare arbitrary samples of bulk SWNT materials of different purities. The primary goal of this paper is to provide the chemical community with a realistic evaluation of current analytical tools for the purity evaluation of a bulk sample of SWNTs. The secondary goal is to draw attention to the growing crisis in the SWNT industry as a result of the lack of quality control and the misleading advertising by suppliers of this material.  相似文献   

14.
In this study,the performances of fixed and fluidized bed reactors in the production of single-walled carbon nanotubes(SWNTs)have been investigated.In both reactors,single-walled carbon nanotubes were grown by catalytic chemical vapor decomposition(CCVD)of methane over Co-Mo/MgO nanocatalyst under two different operating conditions.The synthesized samples were characterized by TEM,TGA and Raman spectroscopy.It is found that the performance of a fluidized bed in the synthesis of carbon nanotubes is much better than that of a fixed bed.The quality of carbon nanotubes obtained from the fluidized bed was significantly higher than that from the fixed bed and the former one with the ID/IG ratio of 0.11 while the latter one with the ID/IG ratio of 0.71.Also,the yield of SWNTs in the fluidized bed was 92 wt%,while it was 78 wt%in the fixed bed.These advantages of fluidized bed reactors for the synthesis of carbon nanotubes can be attributed to more available space for the growth of carbon nanotubes and more uniform temperature and concentration profiles.  相似文献   

15.
Thermogravimetric analysis (TGA) has been used for many years to evaluate polymer thermal stability. The objective of this study is to determine if weight-loss curves from TGA and isothermal TGA (IGA) can be used to determine degradation activation energies and thus rank the thermal stability (TS) and thermooxidative stability (TOS) for selected polyimides. Two high-temperature stable addition-cured polyimides and two aromatic condensation polyimides, all four containing fluorinated connecting linkages in the dianhydride monomers, were compared. Three TGA kinetic methods (Coats/Redfern, Ingraham/Marier, Horowitz/Metzger) were used to determine the activation energy for decomposition in air. The results were then used to rank polyimide stability compared to more traditional rankings based on long-term isothermal air aging weight-loss (IWL) studies and thermal decomposition temperatures (Td) from TGA data. Use of TGA coupled to a Fourier transform infrared (TGA–FTIR) spectrophotometer allowed for the simultaneous identification and relative quantification of evolved decomposition products (CO2, CO, ArNCO, and CHF3) of the four polyimides degraded in air or nitrogen. Isothermal TGA–FTIR (IGA–FTIR) was also done in air to determine the relative rate of product evolution at a constant temperature. Activation energies using TGA and IGA data were determined and then compared with IWL values for the degradation of the polyimide to examine for correlations of real-life thermal oxidative aging to accelerated aging techniques. The Coats/Redfern method and Td were found to best reproduce stability rankings of those from long-term, high-temperature IWL studies. Together, they may provide a time-saving technique to evaluate polyimide thermal oxidative stability. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3943–3956, 1999  相似文献   

16.
The flame retardancy mechanisms of a novel polyhedral oligomeric silsesquioxane containing 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO‐POSS) in polycarbonate/acrylonitrile‐butadiene‐styrene (PC/ABS) blends are discussed. The thermal stability of PC/ABS composites with different DOPO‐POSS loadings are investigated by TGA and the enhancement of the thermal stability could be found at high temperature range. Their fire behavior is tested by the LOI, UL‐94, and cone calorimeter. Excellent flame retardancy of PC/ABS composites have been discovered with 10 wt% DOPO‐POSS loading. TGA‐FTIR, FTIR, XPS, and SEM, respectively, are used to characterize the gaseous products and the condensed residue in thermal decomposition, and the micro‐structure of the chars from cone calorimeter tests. The decomposition of PC/ABS with 10 wt% DOPO‐POSS shows significant changes compared with PC/ABS by TGA, FTIR, TGA‐FTIR, and XPS analysis. The enhancement of the thermal‐oxidative stability of PC/ABS with DOPO‐POSS is attributed to the interaction between DOPO‐POSS and PC/ABS at high temperature, which might be the key for improvement of the flame retardancy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A nanocomposite carbon was prepared by grafting a carbonizable polymer, poly(furfuryl alcohol) (PFA), to a single-wall carbon nanotube (SWNT). The SWNT was first functionalized with arylsulfonic acid groups on the sidewall via a method using a diazonium reagent. Both Raman and FTIR spectroscopies were used to identify the functional groups on the nanotube surface. HRTEM imaging shows that the SWNT bundles are exfoliated after functionalization. Once this state of the SWNTs was accomplished, the PFA-functionalized SWNT (PFA-SWNT) was prepared by in situ polymerization of furfuryl alcohol (FA). The sulfonic acid groups on the surface of the SWNT acted as a catalyst for FA polymerization, and the resulting PFA then grafted to the SWNTs. The surfaces of the SWNTs converted from hydrophilic to hydrophobic when they were wrapped with PFA. The formation of the polymer and the attraction between it and the sulfonic acid groups were confirmed by IR spectra. A nanocomposite carbon was generated by heating the PFA-SWNT in argon at 600 degrees C, a process during which the PFA was transformed to nanoporous carbon (NPC) and the sulfonic acid groups were cleaved from the SWNT. Based upon the Raman spectra and HRTEM images of the composite, it is concluded that SWNTs survive this process and a continuous phase is formed between the NPC and the SWNT.  相似文献   

18.
We describe the design, synthesis, and characterization of a supramolecular hybrid of gold nanometals and semiconducting single-walled carbon nanotubes (SWNTs) wrapped by a porphyrin-fluorene copolymer (1), as well as fabrication of a thin-film transistor (TFT) device using the hybrid. Photoluminescence mapping revealed that the copolymer selectively dissolved SWNTs with chirality indices of (8,6), (8,7), (9,7), (7,6), and (7,5); dissolution of (8,6), and (8,7) SWNTs was especially efficient. The solubilized SWNTs were connected to gold nanoparticles (AuNPs) via a coordination bond to prepare a supramolecular hybrid composed of AuNPs/copolymer 1-wrapped SWNTs, which were studied by atomic force and scanning and transmission electron microscopies. A fabricated TFT device using the semiconducting SWNTs/copolymer 1 shows evident p-type transport with an On/Off ratio of ~10(5). The transport properties of the TFT changed after coordination of the AuNPs with the SWNTs/copolymer 1.  相似文献   

19.
通过聚合物共混法成功地制备出了具有化学交联结构的聚乙烯醇/二甲基二烯丙基氯化铵和丙烯酰胺共聚物(PVA/PAADDA)碱性聚合物电解质膜。采用傅里叶红外分析(FTIR)、扫描电镜(SEM)、热重分析(TGA)和交流阻抗等方法详细考察了PVA/PAADDA膜的分子结构、微观形貌、热稳定性、耐碱稳定性、尺寸稳定性和电导率。红外分析结果表明,PAADDA成功地混入聚合物基体中。SEM分析结果表明,当m(PVA):m(PAADDA)=1:1时,膜可观察到明显的微相分离。TGA结果表明,混入PAADDA后膜的热稳定性没有明显降低,并且在210 oC之前能保持很好的热稳定性。PVA/PAADDA膜在经过高温、高浓度碱溶液(80 oC, 6 mol?L-1)处理后,仍表现出很好的耐碱稳定性。同时,由于膜内形成致密的内互交联网络结构,PVA/PAADDA膜在60 oC水中处理300 h后也能表现出优良的尺寸稳定性和电导率稳定性。此外,膜的甲醇吸收率随着温度的升高没有明显变化,90 oC时甲醇吸收率仅为同条件下Nafion115膜的1/5。  相似文献   

20.
The nature and the extent of degradation of poly(hydroxy ether of bisphenol-A) phenoxy resin were analysed by thermogravimetry (TGA/DTGA) under nitrogen and air atmosphere. Decomposition kinetics were elucidated according to Flynn-Wall-Ozawa, Friedman and Kissinger methods. The evolved gases during degradation were inspected by a thermogravimetry analyser coupled with Fourier Transform Infrared Spectrometer (TGA/FTIR) and also with a TGA coupled to a Mass Spectrometer (TGA/MS). Mass spectra showed that chemical species evolved in phenoxy decomposition in air were very similar to those assigned from degradation in nitrogen (water, methane, CO, CO2, phenol, acetone, etc.). However, these species appear in different amount and at different temperatures in both atmospheres. FTIR analysis of the evolved products showed that water and methane were the beginning decomposition products, indicating that decomposition is initiated by dehydration and cleavage of C-CH3 bond in the bisphenol-A unit of phenoxy resin. After this initial stage, random chain scission is the main degradation pathway. Nevertheless, in air atmosphere, previously the complete decomposition of the phenoxy obtaining fundamentally CO2, and water, the formation of an insulated surface layer of crosslinked structures has been proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号